Skip to main content
Log in

Spin assignments for \(^{23}\hbox {Mg}\) levels and the astrophysical \(^{22}\hbox {Na}(p,\gamma )^{23}\hbox {Mg}\) reaction

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(^{22}\hbox {Na}(p,\gamma )^{23}\hbox {Mg}\) reaction is responsible for destruction of the long-lived radionuclide \(^{22}\hbox {Na}\) produced during nova explosions. Since the reaction proceeds through resonances from levels in \(^{23}\hbox {Mg}\) above the proton threshold at 7.581 MeV, the properties of these levels such as excitation energies, spins, and parities are crucial ingredients to determine the \(^{22}\hbox {Na}(p,\gamma )^{23}\hbox {Mg}\) reaction rate. Despite recent studies of these levels, their spins are not well constrained in many cases. We have measured the \(^{24}\mathrm{Mg}(p,d)^{23}\hbox {Mg}\) transfer reaction to determine spectroscopic properties of these levels at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The spin of the \(E_{x}\) = 7.788 MeV level in \(^{23}\hbox {Mg}\) is constrained to be \(J^{\pi }\) = (3/2\(^+\), 5/2\(^+\)) through the present work. The astrophysical \(^{22}\hbox {Na}(p,\gamma )^{23}\hbox {Mg}\) reaction rate at nova temperatures is updated accordingly. Nova nucleosynthesis model calculations using the newly updated \(^{22}\hbox {Na}(p,\gamma )^{23}\hbox {Mg}\) reaction rate shows that the final weighted abundance of the radionuclide \(^{22}\hbox {Na}\) is increased by 42% compared to that obtained by using the previous \(^{22}\hbox {Na}(p,\gamma )^{23}\hbox {Mg}\) reaction rate of Sallaska et al. for a 1.35 \(M_{\odot }\) ONeMg white dwarf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in the published article.]

References

  1. M. Hernanz, J. José, New Astron. Rev. 48, 35 (2004)

    Article  ADS  Google Scholar 

  2. A.L. Sallaska et al., Phys. Rev. C 83, 034611 (2011)

    Article  ADS  Google Scholar 

  3. S.E. Boggs, New Astron. Rev. 50, 604 (2006)

    Article  ADS  Google Scholar 

  4. A. De Angelis et al., J. High Energy Astrophys. 19, 1 (2018)

    Article  ADS  Google Scholar 

  5. D.D. Clayton, F. Hoyle, Astrophys. J. 187, L101 (1974)

    Article  ADS  Google Scholar 

  6. J. José, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999)

    Article  ADS  Google Scholar 

  7. C. Iliadis, A. Champagne, J. José, S. Starrfield, P. Tupper, Astrophys. J. Suppl. Ser. 142, 105 (2002)

    Article  ADS  Google Scholar 

  8. W.R. Hix, M.S. Smith, S. Starrfield, A. Mezzacappa, D.L. Smith, Nucl. Phys. A 718, 620 (2003)

    Article  ADS  Google Scholar 

  9. M. Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Naimi, X. Xu, Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  10. S. Seuthe, C. Rolfs, U. Schröder, W.H. Schulte, E. Somorjai, H.P. Trautvetter, F.B. Waanders, Nucl. Phys. A 514, 471 (1990)

    Article  ADS  Google Scholar 

  11. F. Stegmüller, C. Rolfs, S. Schmidt, W.H. Schulte, H.P. Trautvetter, R.W. Kavanagh, Nucl. Phys. A 601, 168 (1996)

    Article  ADS  Google Scholar 

  12. A.F. Iyudin et al., Astron. Astrophys. 300, 422 (1995)

    ADS  Google Scholar 

  13. L.C. Haun, N.R. Roberson, Nucl. Phys. A 140, 333 (1970)

    Article  ADS  Google Scholar 

  14. H. Nann, A. Saha, B.H. Wildenthal, Phys. Rev. C 23, 606 (1981)

    Article  ADS  Google Scholar 

  15. S. Schmidt, C. Rolfs, W.H. Schulte, H.P. Trautvetter, R.W. Kavanagh, C. Hategan, S. Faber, B.D. Valnion, G. Graw, Nucl. Phys. A 591, 227 (1995)

    Article  ADS  Google Scholar 

  16. R.L. Kozub, Phys. Rev. 172, 1078 (1968)

    Article  ADS  Google Scholar 

  17. J. Källne, B. Fagerström, Phys. Scr. 11, 79 (1975)

    Article  ADS  Google Scholar 

  18. D.W. Miller et al., Phys. Rev. C 20, 2008 (1979)

    Article  ADS  Google Scholar 

  19. S. Kubono et al., Z. Phys. A 348, 59 (1994)

    Article  ADS  Google Scholar 

  20. D.W. Bardayan et al., Phys. Rev. C 63, 065802 (2001)

    Article  ADS  Google Scholar 

  21. R.B. Firestone, Nucl. Data Sheets 108, 1 (2007)

    Article  ADS  Google Scholar 

  22. D.G. Jenkins et al., Phys. Rev. C 87, 064301 (2013)

    Article  ADS  Google Scholar 

  23. P.D. Kunz. http://spot.colorado.edu/~kunz/(unpublished)

  24. I.Y. Lee, Nucl. Phys. A 520, 641c (1990)

    Article  ADS  Google Scholar 

  25. A. Krämer-Flecken, T. Morek, R.M. Lieder, W. Gast, G. Hebbinghaus, H.M. Jäger, W. Urban, Nucl. Instrum. Methods A 275, 333 (1989)

    Article  ADS  Google Scholar 

  26. A. Saastamoinen et al., Phys. Rev. C 83, 045808 (2011)

    Article  ADS  Google Scholar 

  27. O.S. Kirsebom et al., Phys. Rev. C 93, 025802 (2016)

    Article  ADS  Google Scholar 

  28. M. Wiescher, K. Langanke, Z. Phys. A 325, 309 (1986)

    ADS  Google Scholar 

  29. V. Tripathi, S.L. Tabor, A. Volya, S.N. Liddick, P.C. Bender, N. Larson, C. Prokop, S. Suchyta, P.L. Tai, J.M. VonMoss, Phys. Rev. Lett. 111, 262501 (2013)

    Article  ADS  Google Scholar 

  30. R.J. Tighe, J.C. Batchelder, D.M. Moltz, T.J. Ognibene, M.W. Rowe, J. Cerny, B.A. Brown, Phys. Rev. C 52, R2298 (1995)

    Article  ADS  Google Scholar 

  31. S.J. Jin et al., Phys. Rev. C 88, 035801 (2013)

    Article  ADS  Google Scholar 

  32. R.H. Cyburt et al., Astrophys. J. Suppl. Ser. 189, 240 (2010)

    Article  ADS  Google Scholar 

  33. C. Iliadis, R. Longland, A.E. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010)

    Article  ADS  Google Scholar 

  34. http://nucastrodata.org

  35. S. Starrfield, C. Iliadis, W.R. Hix, F.X. Timmes, W.M. Sparks, Astrophys. J. 692, 1532 (2009)

    Article  ADS  Google Scholar 

  36. S. Starrfield, J.W. Truran, M.C. Wiescher, W.M. Sparks, Mon. Not. R. Astron. Soc. 296, 502 (1998)

    Article  ADS  Google Scholar 

  37. J. José, M. Hernanz, Astrophys. J. 494, 680 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government Ministry of Education, Science, and Technology (MEST) Nos. NRF-2013M7A1A1075764, NRF-2016R1A5A1013277, and NRF-2019R1F1A1058370. This research was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S.DOE Cooperative Agreement No. DE-FG52-08NA285. 52 with Rutgers University and Oak Ridge Associated Universities. This work was also supported in part by the Office of Nuclear Physics, Office of Science of the U.S.DOE under Contracts No. DE-FG02-96ER40955 with Tennessee Technological University, No. DE-FG02-96ER40983 with the University of Tennessee, and DE-AC-05-00OR22725 at Oak Ridge National Laboratory, and by the National Science Foundation under Contract No. PHY-1713857 with University of Notre Dame.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Chae.

Additional information

Communicated by Philip J. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwag, M.S., Chae, K.Y., Ahn, S. et al. Spin assignments for \(^{23}\hbox {Mg}\) levels and the astrophysical \(^{22}\hbox {Na}(p,\gamma )^{23}\hbox {Mg}\) reaction. Eur. Phys. J. A 56, 108 (2020). https://doi.org/10.1140/epja/s10050-020-00106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00106-y

Navigation