Skip to main content
Log in

ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this work, we prepared ZnGeP2 (ZGP) photocatalyst using single flat temperature zone (SFT) method in a vacuum quartz ampoule. The XRD, SEM, EDS, DRS and XPS were used to characterize the crystal structure, morphology, elemental content, optical absorption and band gap structure of ZGP. The results of photocatalytic hydrogen evolution and apparent quantum efficiency show that ZGP is a promising photocatalyst for hydrogen production both under visible and near-infrared light irradiation. In addition, it is also found that adding the common stabilizer H3PO2 and ultrasonic treatment can efficiently improve the photocatalytic activity and stability of ZGP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)

    Article  ADS  Google Scholar 

  2. Q. T. Liu, D. Y. Liu, J. M. Li, and Y. B. Kuang, The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting, Front. Phys. 14(5), 53403 (2019)

    Article  ADS  Google Scholar 

  3. S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of twodimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019)

    Article  ADS  Google Scholar 

  4. Y. H. Lui, B. W. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)

    Article  ADS  Google Scholar 

  5. J. Mao, Y. Wang, Z. L. Zheng, and D. H. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Article  ADS  Google Scholar 

  6. J. Q. Pan, Z. J. Dong, B. B. Wang, Z. Y. Jiang, C. Zhao, J. J. Wang, C. S. Song, Y. Y. Zheng, and C. R. Li, The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction, Appl. Catal. B 242, 92 (2019)

    Article  Google Scholar 

  7. X. Li, X. S. Lv, Q. Q. Zhang, B. B. Huang, P. Wang, X. Y. Qin, X. Y. Zhang, and Y. Dai, Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production, J. Colloid Interface Sci. 525, 136 (2018)

    Article  ADS  Google Scholar 

  8. H. Q. Zhuang, Z. P. Cai, W. T. Xu, X. Y. Zhang, M. L. Huang, and X. X. Wang, Constructing 1D CdS nanorod composites with high photocatalytic hydrogen production by introducing the Ni-based cocatalysts, Catal. Commun. 120, 51 (2019)

    Article  ADS  Google Scholar 

  9. L. L. Zhang, H. W. Zhang, B. Wang, X. Y. Huang, Y. Ye, R. Lei, W. H. Feng, and P. Liu, A facile method for regulating the charge transfer route of WO3/CdS in highefficiency hydrogen production, Appl. Catal. B 244, 529 (2019)

    Article  Google Scholar 

  10. P. Zhou, Y. Y. Liu, Z. Y. Wang, P. Wang, X. Y. Qin, X. Y. Zhang, B. B. Huang, and Y. Dai, Efficient photocatalytic hydrogen generation from water over CdS nanoparticles confined within an alumina matrix, ChemPhotoChem 1(11), 518 (2017)

    Article  Google Scholar 

  11. X. Z. Liang, P. Wang, M. M. Li, Q. Q. Zhang, Z. Y. Wang, Y. Dai, X. Y. Zhang, Y. Y. Liu, M. H. Whangbo, and B. B. Huang, Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation, Appl. Catal. B 220, 356 (2018)

    Article  Google Scholar 

  12. K. C. Christoforidis, Z. Syrgiannis, V. La Parola, T. Montini, C. Petit, E. Stathatos, R. Godin, J. R. Durrant, M. Prato, and P. Fornasiero, Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production, Nano Energy 50, 468 (2018)

    Article  Google Scholar 

  13. J. Y. Chu, X. J. Han, Z. Yu, Y. C. Du, B. Song, and P. Xu, Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures, ACS Appl. Mater. Interfaces 10(24), 20404 (2018)

    Article  Google Scholar 

  14. Y. Q. Wu, P. Wang, X. L. Zhu, Q. Q. Zhang, Z. Y. Wang, Y. Y. Liu, G. Z. Zou, Y. Dai, M. H. Whangbo, and B. B. Huang, Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visiblelight photocatalyst for hydrogen evolution in aqueous HI solution, Adv. Mater. 30(7), 1704342 (2018)

    Article  Google Scholar 

  15. Z. H. Guan, Y. Q. Wu, P. Wang, Q. Q. Zhang, Z. Y. Wang, Z. K. Zheng, Y. Y. Liu, Y. Dai, M. H. Whangbo, and B. B. Huang, Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light, Appl. Catal. B 245, 522 (2019)

    Article  Google Scholar 

  16. T. Jing, Y. Dai, W. Wei, X. D. Ma, and B. B. Huang, Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M=W, Mo), Phys. Chem. Chem. Phys. 16(34), 18596 (2014)

    Article  Google Scholar 

  17. J. Li, X. Y. Wu, W. F. Pan, G. K. Zhang, and H. Chen, Vacancy-rich monolayer BiO2-x as a highly efficient UV, visible, and near-infrared responsive photocatalyst, Angew. Chem. Int. Ed. 57(2), 491 (2018)

    Article  Google Scholar 

  18. J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, and H. Liu, A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Adv. Mater. 25(36), 5075 (2013)

    Article  Google Scholar 

  19. Q. H. Liang, Z. Li, Z. H. Huang, F. Kang, and Q. H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production, Adv. Funct. Mater. 25(44), 6885 (2015)

    Article  Google Scholar 

  20. X. Y. Kong, Y. Y. Choo, S. P. Chai, A. K. Soh, and A. R. Mohamed, Oxygen vacancy induced Bi2WO6 for the realization of photocatalytic CO2 reduction over the full solar spectrum: From the UV to the NIR region, Chem. Commun. 52(99), 14242 (2016)

    Article  Google Scholar 

  21. N. Manfredi, M. Monai, T. Montini, F. Peri, F. De Angelis, P. Fornasiero, and A. Abbotto, Dye-sensitized photocatalytic hydrogen generation: Efficiency enhancement by organic photosensitizer–coadsorbent intermolecular interaction, ACS Energy Lett. 3(1), 85 (2018)

    Article  Google Scholar 

  22. Q. Y. Tian, W. J. Yao, W. Wu, J. Liu, Z. H. Wu, L. Liu, Z. G. Dai, and C. Z. Jiang, Efficient UV–Vis-NIR responsive upconversion and plasmonic-enhanced photocatalyst based on lanthanide-doped NaYF4/SnO2/Ag, ACS Sustain. Chem. & Eng. 5(11), 10889 (2017)

    Article  Google Scholar 

  23. A. Kumar, K. L. Reddy, S. Kumar, A. Kumar, V. Sharma, and V. Krishnan, Rational design and development of lanthanide-doped NaYF4 @CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible–near-infrared broadband spectrum, ACS Appl. Mater. Interfaces 10(18), 15565 (2018)

    Article  Google Scholar 

  24. W. N. Wang, C. X. Huang, C. Y. Zhang, M. L. Zhao, J. Zhang, H. J. Chen, Z. B. Zha, T. T. Zhao, and H. S. Qian, Controlled synthesis of upconverting nanoparticles/ ZnxCd1−xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light, Appl. Catal. B 224, 854 (2018)

    Article  Google Scholar 

  25. K. L. Reddy, S. Kumar, A. Kumar, and V. Krishnan, Wide spectrum photocatalytic activity in lanthanidedoped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles, J. Hazard. Mater. 367, 694 (2019)

    Article  Google Scholar 

  26. Q. Y. Tian, W. J. Yao, W. Wu, and C. Z. Jiang, NIR light-activated upconversion semiconductor photocatalysts, Nanoscale Horiz. 4(1), 10 (2019)

    Article  ADS  Google Scholar 

  27. M. S. Zhu, Y. Osakada, S. Kim, M. Fujitsuka, and T. Majima, Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution, Appl. Catal. B 217, 285 (2017)

    Article  Google Scholar 

  28. Z. J. Zhang and W. Z. Wang, Infrared-light-induced photocatalysis on BiErWO6, Dalton Trans. 42(34), 12072 (2013)

    Article  Google Scholar 

  29. G. C. Xi, S. X. Ouyang, P. Li, J. H. Ye, Q. Ma, N. Su, H. Bai, and C. Wang, Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide, Angew. Chem. Int. Ed. 51(10), 2395 (2012)

    Article  Google Scholar 

  30. L. Wei, X. S. Lv, Y. G. Yang, J. H. Xu, H. J. Yu, H. D. Zhang, X. P. Wang, B. Liu, C. Zhang, and J. X. Zhou, Theoretical investigation on the microscopic mechanism of lattice thermal conductivity of ZnXP2 (X=Si, Ge, and Sn), Inorg. Chem. 58(7), 4320 (2019)

    Article  Google Scholar 

  31. K. S. Rao, D. Ganesh, and A. K. Chaudhary, Generation of terahertz from ZnGeP2 crystal and its application to record the time-resolved photoacoustic spectra of nitromethane, Opt. Laser Technol. 103, 126 (2018)

    Article  ADS  Google Scholar 

  32. A. D. Martinez, A. N. Fioretti, E. S. Toberer, and A. C. Tamboli, Synthesis, structure, and optoelectronic properties of II–IV–V2 materials, J. Mater. Chem. A 5(23), 11418 (2017)

    Article  Google Scholar 

  33. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2μm source, Opt. Lett. 31(12), 1878 (2006)

    Article  ADS  Google Scholar 

  34. M. Gebhardt, C. Gaida, P. Kadwani, A. Sincore, N. Gehlich, C. Jeon, L. Shah, and M. Richardson, High peak-power mid-infrared ZnGeP2 optical parametric oscillator pumped by a Tm:fiber master oscillator power amplifier system, Opt. Lett. 39(5), 1212 (2014)

    Article  ADS  Google Scholar 

  35. M. W. Haakestad, H. Fonnum, and E. Lippert, Midinfrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2, Opt. Express 22(7), 8556 (2014)

    Article  ADS  Google Scholar 

  36. Z. X. Qin, F. Xue, Y. B. Chen, S. H. Shen, and L. J. Guo, Spatial charge separation of one-dimensional Ni2PCd0.9Zn0.1S/g-C3N4 heterostructure for high-quantumyield photocatalytic hydrogen production, Appl. Catal. B 217, 551 (2017)

    Article  Google Scholar 

  37. J. Zeng, H. Wang, Y. C. Zhang, M. K. Zhu, and H. Yan, Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes, J. Phys. Chem. C 111(32), 11879 (2007)

    Article  Google Scholar 

  38. S. R. Zhang, D. P. Zeng, H. J. Hou, and Y. Yu, Firstprinciples prediction on elastic anisotropic, optical, lattice dynamical properties of ZnGeP2, Indian J. Phys. (2019), doi:10.1007/s12648–019–01575–8

    Google Scholar 

  39. F. Herman and S. Skillman, Atomic Structure Calculations, Prentice Hall, Englewood Cliffs, New Jersey, 1966

    Google Scholar 

  40. R. R. Reddy, K. R. Gopal, K. Narasimhulu, L. S. S. Reddy, K. R. Kumar, G. Balakrishnaiah, and M. R. Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials, J. Alloys Compd. 473(1–2), 28 (2009)

    Article  Google Scholar 

  41. S. K. Tripathy and V. Kumar, Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures, Mater. Sci. Eng. B 182, 52 (2014)

    Article  Google Scholar 

  42. S. N. Rashkeev, S. Limpijumnong, and W. R. L. Lambrecht, Second-harmonic generation and birefringence of some ternary pnictide semiconductors, Phys. Rev. B 59(4), 2737 (1999)

    Article  ADS  Google Scholar 

  43. F. Chiker, B. Abbar, S. Bresson, B. Khelifa, C. Mathieu, and A. Tadjer, The reflectivity spectra of ZnXP2 (X=Si, Ge, and Sn) compounds, J. Solid State Chem. 177(11), 3859 (2004)

    Article  ADS  Google Scholar 

  44. J. E. Jaffe and A. Zunger, Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, Zn-SnP2, ZnSiAs2, and MgSiP2, Phys. Rev. B 30(2), 741 (1984)

    Article  ADS  Google Scholar 

  45. G. Kalpana, B. Palanivel, R. M. Thomas, and M. Rajagopalan, Electronic and structural properties of MgS and MgSe, Physica B 222(1–3), 223 (1996)

    Article  ADS  Google Scholar 

  46. R. W. Godby, M. Schlüter, and L. J. Sham, Self-energy operators and exchange-correlation potentials in semiconductors, Phys. Rev. B 37(17), 10159 (1988)

    Article  ADS  Google Scholar 

  47. X. Zhang, L. Z. Zhang, T. F. Xie, and D. J. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures, J. Phys. Chem. C 113(17), 7371 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the National Natural Science Foundation of China (Grant Nos. 21832005, 51602179, 51972195, 21972078, and U1832145), the Major Special Projects of Shandong Province (public welfare; 2019GGX103026). P. Wang acknowledges the support from the Recruitment Program of Global Experts, China, and B. Huang acknowledges the support from the Taishan Scholars Foundation of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, P., Wu, YQ. et al. ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production. Front. Phys. 15, 23604 (2020). https://doi.org/10.1007/s11467-020-0958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0958-4

Keywords

Navigation