Skip to main content
Log in

Chemical defense against microfouling by allelopathic active metabolites of Halymenia floresii (Rhodophyta)

  • 23rd INTERNATIONAL SEAWEED SYMPOSIUM, JEJU
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

During the experimental cultivation of the red alga Halymenia floresii under Integrated MultiTrophic Aquaculture (IMTA), the establishment of opportunist green algae and the colonization of sessile invertebrates, which were usually disturbing the cultivation, were not observed. The culture tanks were clean and the surface of the H. floresii was remarkably free from any fouling organisms. This phenomenon could reveal that the presence of H. floresii may prevent biofilm formation by releasing allelopathic active compounds that ultimately interfere with the settlement and growth of competitors. In order to understand this phenomenon, H. floresii was cultivated under controlled environmental conditions and analyzed for its surface chemical defense metabolites. The surface-associated metabolites were extracted using the DIP extraction method, using different solvents with increasing polarity and immersion periods. Using epifluorescence microscopy, n-hexane was found to be the suitable immersion solvent for H. floresii for a period of 10 to 60 s to extract surface metabolites. The whole cell metabolites were extracted exhaustively with the same solvent for a period of 24 h. The chemical profiling of the surface compounds was performed by liquid chromatography mass spectroscopy (LC-MS), followed by a Mass Bank search and compared with those obtained from the whole-cell extracts. The mean concentration of H. floresii surface metabolites was 600 ng cm−2 (c. 60 g of a fresh sample) whereas the whole-cell metabolite concentration was around 4.5 μg mg−1 (400 mg of the lyophilized sample). The bioactivity of the H. floresii surface extracts was studied by evaluating their quorum quenching behavior on the surface-associated bacteria. The cultivable bacteria isolated from the surface of H. floresii were identified as Vibrio owensii (B3IM), Alteromonas sp. (B7CC), Pseudoalteromonas arabiensis (B4BC), Ruegeria sp. (B4CC), Tenacibaculum sp.(B9BC), Maribacter sp. (B9IM) and Aquimarina sp. (B9.1CC). All the isolated strains belonged to Alphaproteobacteria, Gammaproteobacteria and Bacteroides. The results of this bioactivity proved that the surface-associated metabolite extract (DIP) interferes with the communication signals produced by the bacteria isolates with the reporter strain employed. According to the Mass Bank compound analysis, we hypothesized that flavonoids and/or halogenated compounds might have contributed to this activity. This work provides an understanding of the influence of surface-associated metabolites on the associated bacterial community and by which H. floresii manages to control the biofouling on its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A Abdul Malik S, Bedoux G, Garcia Maldonado JQ, Freile-Pelegrín Y, Robledo D, Bourgougnon N (2019) Defence on surface: macroalgae and their surface-associated microbiome. Adv Bot Res. https://doi.org/10.1016/bs.abr.2019.11.009

  • Alagarasan G, Aswathy KS, Madhaiyan M (2017) Shoot the message, not the messenger—combating pathogenic virulence in plants by inhibiting quorum sensing mediated signaling molecules. Front Plant Sci 8:566

    Google Scholar 

  • Al-Saif SSA, Abdel-Raouf N, El-Wazanani HA, Aref IA (2014) Antibacterial substances from marine algae isolated from Jeddah coast of Red Sea, Saudi Arabia. Saudi J Biol Sci 21:57–64

    CAS  PubMed  Google Scholar 

  • Amsler CD (ed) (2008) Algal chemical ecology. Springer, Berlin

    Google Scholar 

  • Bannister J, Sievers M, Bush F, Bloecher N (2019) Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35:631–648

    CAS  PubMed  Google Scholar 

  • Brian-Jaisson F, Molmeret M, Fahs A, Guentas-Dombrowsky L, Culioli G, Blache Y, Cérantola S, Ortalo-Magné A (2016) Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14. Biofouling 32:547–560

    CAS  PubMed  Google Scholar 

  • Buck BH, Troell MF, Krause G, Angel DL, Grote B, Chopin T (2018) State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front Mar Sci 5:165

    Google Scholar 

  • Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500

    PubMed  PubMed Central  Google Scholar 

  • Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL (2008) Metabolite identification via the Madison Metabolomics Consortium database. Nat Biotechnol 26:162–164

    CAS  PubMed  Google Scholar 

  • Dahms H, Dobretsov S (2017) Antifouling compounds from marine macroalgae. Mar Drugs 15:265

    PubMed Central  Google Scholar 

  • Davis AR, Targett NM, McConnell OJ, Young CM (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In: Scheuer PJ (ed) Bioorganic marine chemistry. Springer, Berlin, pp 85–114

    Google Scholar 

  • de Nys R, Steinberg P, Rogers C, Charlton T, Duncan M (1996) Quantitative variation of secondary metabolites in the sea hare Aplysia parvula and its host plant, Delisea pulchra. Mar Ecol Prog Ser 130:135–146

    CAS  Google Scholar 

  • de Nys R, Dworjanyn SA, Steinberg PD (1998) A new method for determining surface concentrations of marine natural products on seaweeds. Mar Ecol Prog Ser 162:79–87

    Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    CAS  Google Scholar 

  • Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol Rev 37:462–476

    CAS  PubMed  Google Scholar 

  • Freile-Pelegrín Y, Azamar JA, Robledo D (2011) Preliminary characterization of carrageenan from the red seaweed Halymenia floresii. J Aquat Food Prod Technol 20:73–81

    Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godínez-Ortega JL, Snoeijs P, Robledo D, Freile-Pelegrín Y, Pedersén M (2008) Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities. J Appl Phycol 20:253–260

    Google Scholar 

  • Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D, Nguyen T, Ray J, Kuehl J, Arevalo B, Westenskow PD, Wang J, Arkin AP, Deutschbauer AM, Patti GJ, Siuzdak G (2014) Interactive XCMS Online: Simplifying Advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86:6931–6939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greff S, Zubia M, Genta-Jouve G, Massi L, Perez T, Thomas OP (2014) Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. J Nat Prod 77:1150–1155

    CAS  PubMed  Google Scholar 

  • Harder T, Dobretsov S, Qian P (2004) Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar Ecol Prog Ser 274:133–141

    CAS  Google Scholar 

  • Harder T, Campbell AH, Egan S, Steinberg PD (2012) Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga Delisea pulchra. J Chem Ecol 38:442–450

    CAS  PubMed  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    CAS  Google Scholar 

  • Hollants J, Leliaert F, De Clerck O, Willems A (2013) What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiol Ecol 83:1–16

    CAS  PubMed  Google Scholar 

  • Jennings JG, Steinberg PD (1997) Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109:461–473

    CAS  PubMed  Google Scholar 

  • Kelecom A (2002) Secondary metabolites from marine microorganisms. Ann Acad Bras Cienc 74:151–170

    CAS  Google Scholar 

  • Kientz B, Thabard M, Cragg SM, Pope J, Hellio C (2011) A new method for removing microflora from macroalgal surfaces: an important step for natural product discovery. Bot Mar 54:457–469

    Google Scholar 

  • Kim JS, Kim YH, Seo YW, Park S (2007) Quorum sensing inhibitors from the red alga, Ahnfeltiopsis flabelliformis. Biotechnol Bioprocess Eng 12:308–311

    CAS  Google Scholar 

  • Klejdus B, Lojková L, Plaza M, Šnóblová M, Štěrbová D (2010) Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. J Chromatogr A 1217:7956–7965

    CAS  PubMed  Google Scholar 

  • Kumar V, Zozaya-Valdes E, Kjelleberg S, Thomas T, Egan S (2016) Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. Environ Microbiol 18:3962–3975

    CAS  PubMed  Google Scholar 

  • La Barre S, Bates SS (eds) (2018) Blue biotechnology : production and use of marine molecules. Wiley-VCH, Weinheim, p 798

    Google Scholar 

  • Lachnit T, Blümel M, Imhoff JF, Wahl M (2009) Specific epibacterial communities on macroalgae: phylogeny matters more than habitat. Aquat Biol 5:181–186

    Google Scholar 

  • Liu L, Xiao J, Zhang M, Zhu W, Xia X, Dai X, Pan Y, Yan S, Wang Y (2018) A Vibrio owensii strain as the causative agent of AHPND in cultured shrimp, Litopenaeus vannamei. J Invertebr Pathol 153:156–164

    PubMed  Google Scholar 

  • Liu X, Chen Y, Zhong M, Chen W, Lin Q, Du H (2019) Isolation and pathogenicity identification of bacterial pathogens in bleached disease and their physiological effects on the red macroalga Gracilaria lemaneiformis. Aquat Bot 153:1–7

    CAS  Google Scholar 

  • Longford SR, Tujula NA, Crocetti GR, Holmes AJ, Holmstroem C, Kjelleberg S, Steinberg PD, Taylor MW (2007) Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat Microb Ecol 48:217–229

    Google Scholar 

  • Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT (2009) Marine pharmacology in 2005-6: marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim Biophys Acta 1790:283–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  PubMed  Google Scholar 

  • Mohamed S, Hashim SN, Rahman HA (2012) Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 23:83–96

    CAS  Google Scholar 

  • Nylund G, Cervin G, Hermansson M, Pavia H (2005) Chemical inhibition of bacterial colonization by the red alga Bonnemaisonia hamifera. Mar Ecol Prog Ser 302:27–36

    CAS  Google Scholar 

  • Nylund GM, Gribben PE, De Nys R, Steinberg PD, Pavia H (2007) Surface chemistry versus whole-cell extracts: antifouling tests with seaweed metabolites. Mar Ecol Prog Ser 329:73–84

    Google Scholar 

  • Nylund GM, Persson F, Lindegarth M, Cervin G, Hermansson M, Pavia H (2010) The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Microbiol Ecol 71:84–93

    CAS  PubMed  Google Scholar 

  • Nylund GM, Enge S, Pavia H (2013) Costs and benefits of chemical defence in the red alga Bonnemaisonia hamifera. PLoS One 8:e61291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microb Ecol 12:65–78

    CAS  PubMed  Google Scholar 

  • Othmani A, Briand J-F, Ayé M, Molmeret M, Culioli G (2016) Surface metabolites of the brown alga Taonia atomaria have the ability to regulate epibiosis. Biofouling 32:801–813

    CAS  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    CAS  PubMed  Google Scholar 

  • Pliego-Cortés H, Caamal-Fuentes E, Montero-Muñoz J, Freile-Pelegrín Y, Robledo D (2017) Growth, biochemical and antioxidant content of Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta) cultivated under salinity and irradiance treatments. J Appl Phycol 29:2595–2603

    Google Scholar 

  • Pliego-Cortés H, Bedoux G, Boulho R, Taupin L, Freile-Pelegrín Y, Bourgougnon N, Robledo D (2019) Stress tolerance and photoadaptation to solar radiation in Rhodymenia pseudopalmata (Rhodophyta) through mycosporine-like amino acids, phenolic compounds, and pigments in an integrated multi-trophic aquaculture system. Algal Res 41:101542

    Google Scholar 

  • Rittschof D, Sin TM, Teo SLM, Coutinho R (2007) Fouling in natural flows: cylinders and panels as collectors of particles and barnacle larvae. J Exp Mar Biol Ecol 348:85–96

    Google Scholar 

  • Robledo D, Freile-Pelegrín Y (2011) Prospects for the cultivation of economically important carrageenophytes in Southeast Mexico. J Appl Phycol 23:415–416

    Google Scholar 

  • Romero M, Martin-Cuadrado A-B, Roca-Rivada A, Cabello AM, Otero A (2011) Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol Ecol 75:205–217

    CAS  PubMed  Google Scholar 

  • Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F (2011) Surface-associated fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. Biofouling 27:423–433

    CAS  PubMed  Google Scholar 

  • Saha M, Rempt M, Gebser B, Grueneberg J, Pohnert G, Weinberger F (2012) Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment. Biofouling 28:593–604

    CAS  PubMed  Google Scholar 

  • Saha M, Goecke F, Bhadury P (2018) Minireview: algal natural compounds and extracts as antifoulants. J Appl Phycol 30:1859–1874

    CAS  Google Scholar 

  • Singh RP, Reddy CRK (2016) Unraveling the functions of the macroalgal microbiome. Front Microbiol 6:1488

    PubMed  PubMed Central  Google Scholar 

  • Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10:56–63

    CAS  PubMed  Google Scholar 

  • Småge SB, Frisch K, Brevik ØJ, Watanabe K, Nylund A (2016) First isolation, identification and characterisation of Tenacibaculum maritimum in Norway, isolated from diseased farmed sea lice cleaner fish Cyclopterus lumpus L. Aquaculture 464:178–184

    Google Scholar 

  • Steinberg PD, de Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629

    CAS  Google Scholar 

  • Stewart PS (2003) Diffusion in biofilms. J Bacteriol 185:1485–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari BK, Troy DJ (eds) (2015) Seaweed sustainability : food and non-food applications. Elsevier, Amsterdam

    Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    PubMed  Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Google Scholar 

  • Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walls AM, Edwards MD, Firth LB, Johnson MP (2017) Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences. Aquac Environ Interact 9:57–71

    Google Scholar 

  • Wang G, Shuai L, Li Y, Lin W, Zhao X, Duan D (2008) Phylogenetic analysis of epiphytic marine bacteria on hole-rotten diseased sporophytes of Laminaria japonica. J Appl Phycol 20:403–409

    Google Scholar 

  • Wever R, Krenn BE, Renirie R (2018) Marine vanadium-dependent haloperoxidases, their isolation, characterization, and application. Methods Enzymol 605:141–201

    CAS  PubMed  Google Scholar 

  • Winson MK, Swift S, Fish L, Throup JP, Jørgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GSA (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    CAS  PubMed  Google Scholar 

  • Zheng L, Han X, Chen HM, Lin W, Yan XJ (2005) Marine bacteria associated with marine macroorganism: the potential antimicrobial resources. Ann Microbiol 55:119–124

    CAS  Google Scholar 

  • Zhou J, Lyu Y, Richlen ML, Anderson DM, Cai Z (2016) Quorum sensing is a language of chemical signals and plays an ecological role in algal-bacterial interactions. CRC Crit Rev Plant Sci 35:81–105

    PubMed  PubMed Central  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank E. Caamal Fuentes, L. Taupin for their skilful technical assistance for the chromatographic analyses and V. Avila-Velazquez for the H. floresii cultivation.

Funding

Financial support was from ECOS-Nord CONACYT for the collaboration project M14A03 and PN-CONACYT 2015-01-118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shareen A Abdul Malik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A Abdul Malik, S., Bedoux, G., Robledo, D. et al. Chemical defense against microfouling by allelopathic active metabolites of Halymenia floresii (Rhodophyta). J Appl Phycol 32, 2673–2687 (2020). https://doi.org/10.1007/s10811-020-02094-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02094-4

Keywords

Navigation