Skip to main content
Log in

Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the adaptive event-triggered control problem for a class of nonlinear systems subject to periodic disturbances. To reduce the communication burden, a reliable relative threshold strategy is proposed. Fourier series expansion and radial basis function neural network are combined into a function approximator to model suitable time-varying disturbed function of known periods in strict-feedback systems. By combining the Lyapunov stability theory and the backstepping technique, the proposed adaptive control approach ensures that all the signals in the closed-loop system are bounded, and the tracking error can be regulated to a compact set around zero in finite time. Finally, simulation results are presented to verify the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge S S, Wang J. Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients. IEEE Trans Automat Contr, 2003, 48: 1463–1469

    Article  MathSciNet  MATH  Google Scholar 

  2. Song Y D, Huang X C, Wen C Y. Robust adaptive fault-tolerant PID control of MIMO nonlinear systems with unknown control direction. IEEE Trans Ind Electron, 2017, 64: 4876–4884

    Article  Google Scholar 

  3. Xu J J, Xu L, Xie L H, et al. Decentralized control for linear systems with multiple input channels. Sci China Inf Sci, 2019, 62: 052202

  4. Zhu Y, Zheng W X. Multiple Lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwell-time constraints. IEEE Trans Autom Control, 2019. doi: 10.1109/TAC.2019.2938302

    Google Scholar 

  5. Wei Q L, Liu D R, Lin Q, et al. Adaptive dynamic programming for discrete-time zero-sum games. IEEE Trans Neural Netw Learn Syst, 2018, 29: 957–969

    Article  Google Scholar 

  6. Li H Y, Wang Y Y, Yao D Y, et al. A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica, 2018, 97: 404–413

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding L, Han Q L, Wang L Y, et al. Distributed cooperative optimal control of DC microgrids with communication delays. IEEE Trans Ind Inf, 2018, 14: 3924–3935

    Article  Google Scholar 

  8. Lin Z L. Control design in the presence of actuator saturation: from individual systems to multi-agent systems. Sci China Inf Sci, 2019, 62: 026201

  9. Lu Z H, Zhang L, Wang L. Controllability analysis of multi-agent systems with switching topology over finite fields. Sci China Inf Sci, 2019, 62: 012201

  10. Ren H, Karimi H R, Lu R, et al. Synchronization of network systems via aperiodic sampled-data control with constant delay and application to unmanned ground vehicles. IEEE Trans Ind Electron, 2019. doi: 10.1109/TIE.2019.2928241

    Google Scholar 

  11. Zheng C, Li L, Wang L Y, et al. How much information is needed in quantized nonlinear control? Sci China Inf Sci, 2018, 61: 092205

  12. Zhang D, Han Q L, Zhang X M. Network-based modeling and proportional-integral control for direct-drive-wheel systems in wireless network environments. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2924450

    Google Scholar 

  13. He W, Dong Y T. Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans Neural Netw Learn Syst, 2018, 29: 1174–1186

    Article  Google Scholar 

  14. Zhou Q, Li H Y, Wang L J, et al. Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1747–1758

    Article  Google Scholar 

  15. Bai W W, Zhou Q, Li T S, et al. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2921057

    Google Scholar 

  16. Li X M, Zhang B, Li P, et al. Finite-horizon H1 state estimation for periodic neural networks over fading channels. IEEE Trans Neural Netw Learn Syst, 2019. doi: 10.1109/TNNLS.2019.2920368

    Google Scholar 

  17. Tong S C, Li Y M, Sui S. Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans Fuzzy Syst, 2016, 24: 1441–1454

    Article  Google Scholar 

  18. He W, Chen Y H, Yin Z. Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybern, 2016, 46: 620–629

    Article  Google Scholar 

  19. Zhou Q, Zhao S Y, Li H Y, et al. Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans Neural Netw Learn Syst, 2018. doi: 10.1109/TNNLS.2018.2869375

    Google Scholar 

  20. Åström K J, Bernhardsson B. Comparison of periodic and event based sampling for first-order stochastic systems. In: Proceedings of the 14th IFAC World Congress, 1999. 11: 301–306

    Google Scholar 

  21. Arzén K E. A simple event-based PID controller. In: Proceedings of the 14th IFAC World Congress, 1999. 18: 423–428

    Google Scholar 

  22. Zhang L C, Liang H J, Sun Y H, et al. Adaptive event-triggered fault detection scheme for semi-markovian jump systems with output quantization. IEEE Trans Syst Man Cybern Syst, 2019. doi: 10.1109/TSMC.2019.2912846

    Google Scholar 

  23. Liang H J, Zhang Z X, Ahn C K. Event-triggered fault detection and isolation of discrete-time systems based on geometric technique. IEEE Trans Circ Syst II, 2019. doi: 10.1109/TCSII.2019.2907706

    Google Scholar 

  24. Cao L, Li H Y, Dong GW, et al. Event-triggered control for multiagent systems with sensor faults and input saturation. IEEE Trans Syst Man Cybern Syst, 2019. doi: 10.1109/TSMC.2019.2938216

    Google Scholar 

  25. Heemels W P M H, Sandee J H, van Den Bosch P P J. Analysis of event-driven controllers for linear systems. Int J Control, 2008, 81: 571–590

    Article  MathSciNet  MATH  Google Scholar 

  26. Li Y X, Yang G H. Model-based adaptive event-triggered control of strict-feedback nonlinear systems. IEEE Trans Neural Netw Learn Syst, 2018, 29: 1033–1045

    Article  Google Scholar 

  27. Ge X H, Han Q L, Wang Z D. A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans Cybern, 2019, 49: 171–183

    Article  Google Scholar 

  28. Pan Y N, Yang G H. Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst, 2017, 329: 91–107

    Article  MathSciNet  MATH  Google Scholar 

  29. Ge X H, Han Q L. Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans Ind Electron, 2017, 64: 8118–8127

    Article  Google Scholar 

  30. Liu T F, Jiang Z P. Event-triggered control of nonlinear systems with state quantization. IEEE Trans Automat Contr, 2018, 64: 797–803

    MathSciNet  MATH  Google Scholar 

  31. Xing L T, Wen C Y, Liu Z T, et al. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans Automat Contr, 2017, 62: 2071–2076

    Article  MathSciNet  MATH  Google Scholar 

  32. Xing L T, Wen C Y, Liu Z T, et al. Event-triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans Automat Contr, 2019, 64: 290–297

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen W S. Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks. IET Control Theor Appl, 2009, 3: 1383–1394

    Article  MathSciNet  Google Scholar 

  34. Chen W S, Jiao L C, Li R H, et al. Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances. IEEE Trans Fuzzy Syst, 2010, 18: 674–685

    Article  Google Scholar 

  35. Zuo R W, Dong X M, Liu Y Z, et al. Adaptive neural control for MIMO pure-feedback nonlinear systems with periodic disturbances. IEEE Trans Neural Netw Learn Syst, 2019, 30: 1756–1767

    Article  MathSciNet  Google Scholar 

  36. Ning B, Han Q L. Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics. IEEE Trans Automat Contr, 2019, 64: 1686–1693

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu Y, Liu X P, Jing Y W, et al. Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network. IEEE Trans Neural Netw Learn Syst, 2019. doi: 10.1109/TNNLS.2019.2919577

    Google Scholar 

  38. Chen W S, Wen C Y, Wu J. Global exponential/finite-time stability of nonlinear adaptive switching systems with applications in controlling systems with unknown control direction. IEEE Trans Automat Contr, 2018, 63: 2738–2744

    Article  MathSciNet  MATH  Google Scholar 

  39. Li F Z, Liu Y G. Global practical tracking with prescribed transient performance for inherently nonlinear systems with extremely severe uncertainties. Sci China Inf Sci, 2019, 62: 022204

  40. Liu Y, Liu X P, Jing Y W, et al. A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems. IEEE Trans Fuzzy Syst, 2019, 27: 646–658

    Article  Google Scholar 

  41. Fu J, Ma R C, Chai T Y. Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica, 2015, 54: 360–373

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang F, Zhang X Y. Adaptive finite time control of nonlinear systems under time-varying actuator failures. IEEE Trans Syst Man Cybern Syst, 2018. doi: 10.1109/TSMC.2018.2868329

    Google Scholar 

  43. Zhao T, Liu J H, Dian S Y. Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity. Inf Sci, 2019, 483: 153–173

    Article  MathSciNet  Google Scholar 

  44. Ma H, Li H Y, Liang H J, et al. Adaptive fuzzy event-triggered control for stochastic nonlinear systems with full state constraints and actuator faults. IEEE Trans Fuzzy Syst, 2019. doi: 10.1109/TFUZZ.2019.2896843

    Google Scholar 

  45. Yang Y S, Zhou C J. Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach. Inf Sci, 2005, 170: 211–234

    Article  MathSciNet  MATH  Google Scholar 

  46. Ahn H S, Chen Y Q. State-dependent periodic adaptive disturbance compensation. IET Control Theor Appl, 2007, 1:1008–101447

    Article  MathSciNet  Google Scholar 

  47. Wang F, Chen B, Liu X P, et al. Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans Fuzzy Syst, 2018, 26: 1207–1216

    Article  Google Scholar 

  48. Park J, Sandberg IW. Universal approximation using radial-basis-function networks. Neural Comput, 1991, 3: 246–257

    Article  Google Scholar 

  49. Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control design. Automatica, 1996, 32: 423–427

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Key R&D Program of China (Grant No. 2018YFB-1700400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Li, H., Lu, R. et al. Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Sci. China Inf. Sci. 63, 150212 (2020). https://doi.org/10.1007/s11432-019-2680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2680-1

Keywords

Navigation