Skip to main content

Advertisement

Log in

Assessing the Effect of Contaminated and Restored Marine Sediments in Different Experimental Mesocosms Using an Integrated Approach and Mytilus galloprovincialis as a Model

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The research presented here was conducted to ascertain the effectiveness of recovery technologies in remediating a compromised marine environment. The multidisciplinary approach aims to integrate traditional chemical-physical analysis and to assess the biological parameters of Mytilus galloprovincialis within different experimental mesocosms (W, G, and B). In particular, this system was designed to reproduce sediment resuspension in a marine environment, which is thought to be one cause of contaminant release. The study combined morphological and ultrastructural observations with DNA damage assessment and mRNA expression of those genes involved in cellular stress responses. The tissues of mussels maintained in the polluted mesocosm showed a higher accumulation of Pb and Hg than in those maintained in restored mesocosm. This observation correlates well with mRNA expression of MT10 and data on DNA damage. The outcome of the biological evaluation consolidates the chemical characterization and supports the concept that the remediation method should be evaluated at an early stage, both to analytically determine the reduction of toxic components and to assess its ultimate impact on the biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GAPDH :

Glyceraldehyde-3-phosphate dehydrogenase

β2M :

Beta-2 microglobulin

HPRT1 :

Hypoxanthine phosphoribosyl transferase 1

βActin :

Beta actin

Tbp :

TATA box-binding protein

RPL13 :

Ribosomal protein L13

CAT :

Catalase

CYP4Y1 :

Mytilus cytochrome P450

GSTP1 :

Glutathione S-transferase

HSP70 :

Heat Shock Protein 70

HSP90 :

Heat Shock Protein 90

MT10 :

Metallothionein 10

SOD1 :

Superoxide dismutase 1

References

  • Auffret M, Rousseau S, Boutet I, Tanguy A, Baron J, Moraga D, Duchemin M (2006) A multiparametric approach for monitoring immunotoxic responses in mussels from contaminated sites in Western Mediterranea. Ecotoxicol Environ Saf 63:393–405

    Article  PubMed  CAS  Google Scholar 

  • Ausili A, Gabellini M, Cammarata G, Fattorini D, Benedetti M, Pisanelli B, Gorbi S, Regoli F (2008) Ecotoxicological and human health risk in a petrochemical district of southern Italy. Mar Environ Res 66:215–217

    Article  PubMed  CAS  Google Scholar 

  • Baršienė J, Lazutka J, Šyvokienė J, Dedonyė V, Rybakovas A, Bjornstad A, Anders OK (2004) Analysis of micronuclei in blue mussels and fish from the Baltic and the North Seas. Environ Toxicol 19:365–371

    Article  PubMed  CAS  Google Scholar 

  • Bebianno MJ, Lopes B, Guerra L, Hoarau P, Ferreira AM (2007) Glutathione S-tranferases and cytochrome P450 activities in Mytilus galloprovincialis from the south coast of Portugal: effect of abiotic factors. Environ Int 33:550–558

    Article  PubMed  CAS  Google Scholar 

  • Bianchi N, Baccetti N, Leonzio C, Giovacchini P, Ancora S (2018) Temporal and geographical variations of mercury and selenium in eggs of Larus michahellis and Larus audouinii from central Mediterranean islands. Chem Ecol 34:595–609

    Article  CAS  Google Scholar 

  • Bolognesi C, Cirillo S (2014) Genotoxicity biomarkers in aquatic bioindicators. Curr Zool 60:273–284

    Article  CAS  Google Scholar 

  • Bolognesi C, Hayashi M (2011) Micronucleus assay in aquatic animals. Mutagenesis 26:205–213

    Article  PubMed  CAS  Google Scholar 

  • Caliani I, Porcelloni S, Mori G, Frenzilli G, Ferraro M, Marsili L, Casini S, Fossi MC (2009) Genotoxic effects of produced waters in mosquito fish (Gambusia affinis). Ecotoxicology 18:75–80

    Article  PubMed  CAS  Google Scholar 

  • Cappello T, Maisano M, D’Agata A, Natalotto A, Mauceri A, Fasulo S (2013) Effects of environmental pollution in caged mussels (Mytilus galloprovincialis). Mar Environ Res 91:52–60

    Article  PubMed  CAS  Google Scholar 

  • Cappello S, Genovese M, Denaro R, Santisi S, Volta A, Bonsignore M, Mancini G, Giuliano L, Genovese L, Yakimov MM (2015) Quick stimulation of Alcanivorax sp. by bioemulsificant EPS2003 on microcosm oil spill simulation. Braz J Microbiol 45(4):1317–1323

    Article  PubMed  PubMed Central  Google Scholar 

  • Corsolini S, Ancora S, Bianchi N, Mariotti G, Leonzio C, Christiansen JS (2014) Organotropism of persistent organic pollutants and heavy metals in the Greenland shark Somniosus microcephalus in NE Greenland. Mar Pollut Bull 87:381–387

  • Dermont G, Bergeron M, Mercier G, Richer-Lafleche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31

    Article  PubMed  CAS  Google Scholar 

  • Di Leonardo R, Bellanca A, Capotondi L, Cundy A, Neri R (2007) Possible impacts of Hg and PAH contamination on benthic foraminiferal assemblages: an example from the Sicilian coast, central Mediterranean. Sci Total Environ 388:168–183

    Article  PubMed  CAS  Google Scholar 

  • Di Leonardo R, Bellanca A, Angelone M, Leonardi M, Neri R (2008) Impact of human activities on the central Mediterranean offshore: evidence from Hg distribution in box-core sediments from the Ionian see. Appl Geochem 23:3756–3766

    Article  CAS  Google Scholar 

  • Di Leonardo R, Adelfio G, Bellanca A, Chiodi M, Mazzola S (2014a) Analysis and assessment of trace element contamination in offshore sediments of the Augusta Bay (SE Sicily): a multivariate statistical approach based on canonical correlation analysis and mixture density estimation approach. J Sea Res 85:428–442

    Article  Google Scholar 

  • Di Leonardo R, Mazzola A, Tramati CD, Vaccaro A, Vizzini S (2014b) Highly contaminated areas as sources of pollution for adjoining ecosystems: the case of Augusta Bay (central Mediterranean). Mar Pollut Bull 89:417–426

  • Duchemin MB, Auffret M, Wessel N, Fortier M, Morin Y, Pellerin J, Fournier M (2008) Multiple experimental approaches of immunotoxic effects of mercury chloride in the blue mussel, Mytilus edulis, through in vivo, in tubo and in vitro exposures. Environ Pollut 153:416–423

    Article  PubMed  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  PubMed  CAS  Google Scholar 

  • Fasulo S, Guerriero G, Cappello S, Colasanti M, Schettino T, Leonzio C, Mancini G, Gornati R (2015) The “SYSTEMS BIOLOGY” in the study of xenobiotic effects on marine organisms for evaluation of the environmental health status: biotechnological applications for potential recovery strategies. Rev Environ Sci Biotechnol 14:339–345

    Article  CAS  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    Article  PubMed  CAS  Google Scholar 

  • Ficco P, Cammarata G, Bacci E (2009) Procedimento n. 5010/08 RGNR. Relazione di consulenza tecnica in merito all’origine dei contaminanti presenti nei sedimenti ed alle strategie per il risanamento della Rada di Augusta. Per conto della Procura della Repubblica presso il Tribunale ordinario di Siracusa, p 131

  • Francesconi KA, Lenanton RCJ, Caputi N, Jones S (1997) Long-term study of mercury concentrations in fish following cessation of a mercury-containing discharge. Mar Environ Res 43:27–40

    Article  CAS  Google Scholar 

  • Gagnon C, Fisher N (1997) Bioavailability of sediment-bound methyl and inorganic Hg to a marine bivalve. Environ Sci Technol 31:993–998

    Article  CAS  Google Scholar 

  • Galloway T, Lewis C, Hagger J (2010) In: Timmis KN, Mc-Genity T, van der Meer JR, de Lorenzo V (eds) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Garmendia L, Soto M, Vicario U, Kim Y, Cajaravillea MP, Marigómez I (2011) Application of a battery of biomarkers in mussel digestive gland to assess long-term effects of the Prestige oil spill in Galicia and Bay of Biscay: tissue-level biomarkers and histopathology. J Environ Monit 13:915–932

    Article  PubMed  CAS  Google Scholar 

  • Gazzetta Ufficiale Della Repubblica Italiana (G.U.R.I.) (2011) Decreto Ministero dell’ambiente e della tutela del territorio e del mare 8 novembre 2010, n. 260.Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3aprile 2006, n. 152, recante norme in materia ambientale, predisposto ai sensi dell’articolo 75, comma 3, del medesimo decreto legislativo. Supplemento n. 31alla Gazzetta Ufficiale 7 febbraio 2011 n. 30

  • George SG, Coombs TL (1977) The effects of chelatin agents on the uptake and accumulation of cadmium by Mytilus edulis. Mar Biol 39:261–278

    Article  CAS  Google Scholar 

  • Gornati R, Papis E, Rimoldi S, Terova G, Saroglia M, Bernardini G (2004) Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax, L.). Gene 341:111–118

    Article  PubMed  CAS  Google Scholar 

  • Gornati R, Maisano M, Pirrone C, Cappello T, Rossi F, Borgese M, Giannetto A, Cappello S, Mancini G, Bernardini G, Fasulo S (2019) Mesocosm system to evaluate BF-MBR efficacy in mitigating oily-wastewater discharges: an integrated study on Mytilus galloprovincialis. Mar Biotechnol. https://doi.org/10.1007/s10126-019-09923-9

  • Hund-Rinke K, Kördel W (2003) Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicol Environ Saf 56:52–62

    Article  PubMed  CAS  Google Scholar 

  • Jha AN (2008) Ecotoxicological application and significance of the comet assay. Mutagenesis 23:207–222

    Article  PubMed  CAS  Google Scholar 

  • Katagi T (2010) Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Rev Environ Contam Toxicol 204:1–132

    PubMed  CAS  Google Scholar 

  • Komárek M, Zeman J (2004) Dynamics of Cu, Zn, Cd, and Hg release from sediments at surface conditions. Bull Geosci 79:99–106 ISSN 1214–1119

    Google Scholar 

  • Landrum PF, Harkey GA, Kukkonen J (1996) Evaluation of organic contaminant exposure in aquatic organisms: the significance of bioconcentration and bioaccumulation. In: Newman MC, Jagoe CH (eds) Ecotoxicology: a hierarchical treatment. Lewis Publishers, Tokyo

    Google Scholar 

  • Li H, Ran Y (2012) Distribution and bioconcentration of polycyclic aromatic hydrocarbons in surface water and fishes. Sci World J 2012:1–14

    Google Scholar 

  • Long ER, MacDonald D, Smith S, Calder F (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97

    Article  Google Scholar 

  • Lorenzo JI, Beiras R, Mubiana VK, Blust R (2005) Copper uptake by Mytilus edulis in the presence of humic acids. Environ Toxicol Chem 24(4):973–980

    Article  PubMed  CAS  Google Scholar 

  • Luciano A, Viotti P, Torretta V, Mancini G (2013) Numerical approach to modelling pulse-mode soil flushing on a Pb-contaminated soil. J Soils Sediments 13:43–55

    Article  CAS  Google Scholar 

  • MacDonald DD, Carr S, Clade FD, Long ED, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278

    Article  PubMed  CAS  Google Scholar 

  • Maisano M, Cappello T, Natalotto A, Vitale V, Parrino V, Giannetto A, Oliva S, Mancini G, Cappello S, Mauceri A, Fasulo S (2016) Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: histological changes, neurotoxicity and hypoxic stress. Mar Environ Res 128:114–112

    Article  PubMed  CAS  Google Scholar 

  • Manta DS, Bonsignore M, Oliveri E, Barra M, Tranchida G, Giaramita L, Mazzola S, Sprovieri M (2016) Fluxes and the mass balance of mercury in Augusta Bay (Sicily, southern Italy). Estuar Coast Shelf Sci. https://doi.org/10.1016/j.ecss.2016.08.013

  • Marigómez I, Soto M, Cajaraville MP, Angulo E, Giamberini L (2002) Cellular and subcellular distribution of metals in molluscs. Microsc Res Tech 56:358–392

    Article  PubMed  Google Scholar 

  • Nolan C, Duke E, Lorenzon G, Sabbioni E, Marafante E (1984) Heavy metal uptake and intracellular binding in isolated gill preparations of Mytilus galloprovincialis L. Sci Total Environ 40:83–89

    Article  PubMed  CAS  Google Scholar 

  • Odžak N, Zvonarić T, Gašpić ZK, Horvat M, Barić A (2000) Biomonitoring of Hg in the Kaštela Bay using transplanted mussels. Sci Total Environ 261:61–68

  • Palombella S, Pirrone C, Cherubino M, Valdatta L, Bernardini G, Gornati R (2017) Identification of reference genes for qPCR analysis during hASC long culture maintenance. PLoS One 12:1–12

    Article  CAS  Google Scholar 

  • Phillips DJH, Rainbow PS (1994) In: Chapman and Hall (ed) Biomonitoring of trace aquatic contaminants, 2nd edn. London, Springer

    Google Scholar 

  • Pirrone C, Rossi F, Cappello S, Borgese M, Mancini G, Bernardini G, Gornati R (2018) Evaluation of biomarkers in Mytilus galloprovincialis as an integrated measure of BF-MBR efficiency in mitigating the impact of oily-wastewater discharge to marine environment: a microcosm approach. Aquat Toxicol 198:49–62

    Article  PubMed  CAS  Google Scholar 

  • Poblete-Naredo I, Albores A (2016) Molecular biomarkers to assess health risks due to environmental contaminants exposure. Biomédica 36:309–335

    Article  PubMed  Google Scholar 

  • Raftopoulou EK, Dimitriadis VK (2011) Comparative study of the accumulation and detoxification of Cu (essential metal) and Hg (nonessential metal) in the digestive gland and gills of mussels Mytilus galloprovincialis, using analytical and histochemical techniques. Chemosphere 83:1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Rainbow PS (1993) In: Dallinger R, Rainbow PS (eds) The significance of trace metal concentrations in marine invertebrates Lewis Publ, Boca Raton

  • Randall PM, Chattopadhyay S (2004) Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. J Hazard Mater B 114:211–223

    Article  CAS  Google Scholar 

  • Randall PM, Chattopadhyay S (2013) Mercury contaminated sediment sites - an evaluation of remedial options. Environ Res 125:131–149

    Article  PubMed  CAS  Google Scholar 

  • Rivaro P, Ianni C, Abelmoschi ML, Soggia F, Frache R (2009) Laboratory studies on the accumulation of inorganic mercury and methylmercury by the mussel (Mytilus galloprovincialis, Lam) in relation to the presence of sediment. Toxicol Environ Chem 91(6):1159–1173

    Article  CAS  Google Scholar 

  • Rossi F, Bernardini G, Bonfanti P, Colombo A, Prati M, Gornati R (2009) Effects of TCDD on spermatogenesis related Factor-2 (SRF-2): gene expression in Xenopus. Toxicol Lett 191:189–194

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Palombella S, Pirrone C, Mancini G, Bernardini G, Gornati R (2016) Evaluation of tissue morphology and gene expression as biomarkers of pollution in mussel Mytilus galloprovincialis caging experiment. Aquat Toxicol 181:57–66

    Article  PubMed  CAS  Google Scholar 

  • Sager DR (2002) Long-term variation in mercury concentrations in estuarine organisms with changes in releases into Lavaca Bay, Texas. Mar Pollut Bull 44:807–815

    Article  PubMed  CAS  Google Scholar 

  • Satyro S, Race M, Marotta R, Dezotti M, Spasiano D, Mancini G (2014) Simulated solar photocatalytic processes for the simultaneous removal of EDDS, Cu(II), Fe(III) and Zn(II) in synthetic and real contaminated soil washing solutions. J Environ Chem Eng 2(4):1969–1979

    Article  CAS  Google Scholar 

  • Speciale A, Zena R, Calabrò C, Bertuccio C, Aragona M, Saija A, Trombetta D, Cimino F, Lo Cascio P (2018) Experimental exposure of blue mussels (Mytilus galloprovincialis) to high levels of benzo[α]pyrene and possible implications for human health. Ecotoxicol Environ Saf 150:96–103

    Article  PubMed  CAS  Google Scholar 

  • Sprovieri M, Oliveri E, Di Leonardo R, Romano E, Ausili A, Gabellini M, Barra M, Tranchida G, Bellanca A, Neri R, Budillon F, Saggiomo R, Mazzola S, Saggiomo V (2011) The key role played by the Augusta basin (southern Italy) in the mercury contamination of the Mediterranean Sea. J Environ Monit 13(6):1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Subirés-Munoz JD, García-Rubio A, Vereda-Alonso C, Gómez-Lahoz C, Rodríguez-Maroto JM, García-Herruzo F, Paz-García JM (2011) Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Sep Purif Technol 79:151–156

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. Exp Suppl 101:133–164

    PubMed  Google Scholar 

  • Tunca E, Aydın M, Şahin ÜA (2018) An ecological risk investigation of marine sediment from the northern Mediterranean coasts (Aegean Sea) using multiple methods of pollution determination. Environ Sci Pollut Res 25:7487–7503

    Article  CAS  Google Scholar 

  • U.S. EPA (1997) Technology alternatives for the remediation of soils contaminated with As, Cd, Cr, Hg, and Pb. EPA/540/S-97/500, US. EPA Office of Research and Development, Cincinnati, OH. https://semspub.epa.gov/work/05/921799.pdf. Accessed 25 March 2020

  • U.S. EPA (2007) Treatment technologies for mercury in soil, waste and water, EPA-542-R-07-003. https://clu-in.org/download/remed/542r07003.pdf. Accessed 25 March 2020

  • Vodyanitskii YN (2016) Standards for the contents of heavy metals in soils of some states. Ann Agrar Sci 14:257–263

    Article  Google Scholar 

  • Wang WX, Fisher NS (1999) Delineating metal accumulation pathways for marine invertebrates. Sci Tot Environ 237-238:459–472

    Article  Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites – a review. J Hazard Mater 221-222:1–18

    Article  PubMed  CAS  Google Scholar 

  • Wasay S, Arnfalk P, Tokunaga S (1995) Remediation of a soil polluted by mercury with acidic potassium iodide. J Hazard Mater 44:93–102

    Article  CAS  Google Scholar 

  • Zang F, Wang S, Nan Z, Ma J, Yu Wang Y, Chen Y, Zhang Q, Lil Y (2017) Influence of pH on the release and chemical fractionation of heavy metals in sediment from a suburban drainage stream in an arid mine-based oasis. J Soils Sediments 17:2524–2536

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Silvia Palombella and Ilaria Armenia for their help during the mussel sampling campaign. The authors gratefully acknowledge “Centro Grandi Attrezzature per la Ricerca Biomedica” University of Insubria for making instruments available and for the hospitality. Marina Borgese is a PhD student of the Biotechnology, Biosciences and Surgical Technology course at Università degli Studi dell’Insubria.

Funding

This research was supported by grants of the Italian Ministry on Systems Biology: PRIN (Prot. T7 2010ARBL001/008) and FAR (Fondo comune di Ateneo per la Ricerca 2016 to RG and GB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalba Gornati.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancora, S., Rossi, F., Borgese, M. et al. Assessing the Effect of Contaminated and Restored Marine Sediments in Different Experimental Mesocosms Using an Integrated Approach and Mytilus galloprovincialis as a Model. Mar Biotechnol 22, 411–422 (2020). https://doi.org/10.1007/s10126-020-09961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-020-09961-8

Keywords

Navigation