Skip to main content
Log in

Excellent thermoelectric performance in weak-coupling molecular junctions with electrode doping and electrochemical gating

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Excellent thermoelectric performance in molecular junctions requires a high power factor, a low thermal conductance, and a maximum figure of merit (ZT) near the Fermi level. In the present work, we used density functional theory in combination with a nonequilibrium Green’s function to investigate the thermoelectric performance of carbon chain-graphene junctions with both strong-coupling and weak-coupling contact between the electrodes and the molecules. The results revealed that a room temperature ZT of 4 could be obtained for the weak-coupling molecular junction, approximately one order of magnitude higher than that reached by the strong-coupling junction. The reason for this is that strong interfacial scattering suppresses most of the phonon modes in weak-coupling systems, resulting in ultralow phonon thermal conductance. The influence of electrode width, electrode doping, and electrochemical gating on the thermoelectric performance of the weak-coupling system was also investigated, and the results revealed that an excellent thermoelectric performance can be obtained near the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Nature 514, 470 (2014).

    ADS  Google Scholar 

  2. Y. Y. Liu, B. L. Li, W. X. Zhou, and K. Q. Chen, Appl. Phys. Lett. 109, 113107 (2016).

    ADS  Google Scholar 

  3. Z. L. Yu, Y. Q. Zhao, B. Liu, and M. Q. Cai, Appl. Surf. Sci. 497, 143787 (2019).

    Google Scholar 

  4. L. E. Bell, Science 321, 1457 (2008).

    ADS  Google Scholar 

  5. G. Zhang, and Y. W. Zhang, J. Mater. Chem. C 5, 7684 (2017).

    Google Scholar 

  6. Y. J. Zeng, D. Wu, X. H. Cao, W. X. Zhou, L. M. Tang, and K. Q. Chen, Adv. Funct. Mater. 30, 1903873 (2019).

    Google Scholar 

  7. W. X. Zhou, Y. Cheng, K. Q. Chen, G. Xie, T. Wang, and G. Zhang, Adv. Funct. Mater. 30, 1903829 (2019).

    Google Scholar 

  8. G. Yang, Q. X. Yu, H. J. Geng, and Y. X. Wang, Sci. China-Phys. Mech. Astron. 63, 217321 (2019).

    ADS  Google Scholar 

  9. J. S. Xiang, S. L. Hu, M. Lyu, W. L. Zhu, C. Y. Ma, Z. Y. Chen, F. Steglich, G. F. Chen, and P. J. Sun, Sci. China-Phys. Mech. Astron. 63, 237011 (2020), arXiv: 1908.00184.

    ADS  Google Scholar 

  10. M. Jonson, and G. D. Mahan, Phys. Rev. B 21, 4223 (1980).

    ADS  MathSciNet  Google Scholar 

  11. B. Kubala, J. König, and J. Pekola, Phys. Rev. Lett. 100, 066801 (2008), arXiv: 0709.4181.

    ADS  Google Scholar 

  12. P. Murphy, S. Mukerjee, and J. Moore, Phys. Rev. B 78, 161406 (2008), arXiv: 0805.3374.

    ADS  Google Scholar 

  13. Z. X. Xie, J. Z. Liu, X. Yu, H. B. Wang, Y. X. Deng, K. M. Li, and Y. Zhang, J. Appl. Phys. 117, 114308 (2015).

    ADS  Google Scholar 

  14. Z. X. Xie, Y. Zhang, X. Yu, K. M. Li, and Q. Chen, J. Appl. Phys. 115, 104309 (2014).

    ADS  Google Scholar 

  15. L. Shi, D. Yao, G. Zhang, and B. Li, Appl. Phys. Lett. 96, 173108 (2010).

    ADS  Google Scholar 

  16. H. Sadeghi, S. Sangtarash, and C. J. Lambert, 2D Mater. 4, 015012 (2016).

    Google Scholar 

  17. C. C. Chen, Z. Li, L. Shi, and S. B. Cronin, Nano Res. 8, 666 (2015).

    Google Scholar 

  18. P. Z. Jia, Y. J. Zeng, D. Wu, H. Pan, X. H. Cao, W. X. Zhou, Z. X. Xie, J. X. Zhang, and K. Q. Chen, J. Phys.-Condens. Matter 32, 055302 (2020).

    ADS  Google Scholar 

  19. Q. Li, K. Q. Chen, and L. M. Tang, Phys. Rev. Appl. 13, 014064 (2020).

    ADS  Google Scholar 

  20. Y. Yokomizo, and J. Nakamura, Appl. Phys. Lett. 103, 113901 (2013).

    ADS  Google Scholar 

  21. Z. X. Xie, X. K. Chen, X. Yu, Y. Zhang, H. B. Wang, and L. F. Zhang, Sci. China-Phys. Mech. Astron. 60, 107821 (2017).

    ADS  Google Scholar 

  22. X. K. Chen, J. Liu, Z. X. Xie, Y. Zhang, Y. X. Deng, and K. Q. Chen, Appl. Phys. Lett. 113, 121906 (2018).

    ADS  Google Scholar 

  23. Y. Y. Liu, Y. J. Zeng, P. Z. Jia, X. H. Cao, X. Jiang, and K. Q. Chen, J. Phys.-Condens. Matter 30, 275701 (2018).

    ADS  Google Scholar 

  24. K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, and A. Rubio, Phys. Rev. B 86, 045425 (2012), arXiv: 1204.1445.

    ADS  Google Scholar 

  25. Z. X. Xie, L. M. Tang, C. N. Pan, K. M. Li, K. Q. Chen, and W. Duan, Appl. Phys. Lett. 100, 073105 (2012).

    ADS  Google Scholar 

  26. K. J. Erickson, F. Léonard, V. Stavila, M. E. Foster, C. D. Spataru, R. E. Jones, B. M. Foley, P. E. Hopkins, M. D. Allendorf, and A. A. Talin, Adv. Mater. 27, 3453 (2015).

    Google Scholar 

  27. L. P. Tang, Q. Z. Li, C. X. Zhang, F. Ning, W. X. Zhou, L. M. Tang, and K. Q. Chen, J. Magn. Magn. Mater. 488, 165354 (2019).

    Google Scholar 

  28. J. Khan, Y. Liu, T. Zhao, H. Geng, W. Xu, and Z. Shuai, J Comput Chem 39, 2582 (2018).

    Google Scholar 

  29. P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, Science 315, 1568 (2007).

    ADS  Google Scholar 

  30. A. Saraiva-Souza, M. Smeu, L. Zhang, A. G. Souza Filho, H. Guo, and M. A. Ratner, J. Am. Chem. Soc. 136, 15065 (2014).

    Google Scholar 

  31. G. Kuang, S. Z. Chen, L. Yan, K. Q. Chen, X. Shang, P. N. Liu, and N. Lin, J. Am. Chem. Soc. 140, 570 (2018).

    Google Scholar 

  32. D. Wu, X. H. Cao, S. Z. Chen, L. M. Tang, Y. X. Feng, K. Q. Chen, and W. X. Zhou, J. Mater. Chem. A 7, 19037 (2019).

    Google Scholar 

  33. D. Nozaki, H. Sevinçli, W. Li, R. Gutiérrez, and G. Cuniberti, Phys. Rev. B 81, 235406 (2010).

    ADS  Google Scholar 

  34. L. Cui, S. Hur, Z. A. Akbar, J. C. Klöckner, W. Jeong, F. Pauly, S. Y. Jang, P. Reddy, and E. Meyhofer, Nature 572, 628 (2019).

    ADS  Google Scholar 

  35. X. H. Cao, D. Wu, Y. X. Feng, W. X. Zhou, L. M. Tang, and K. Q. Chen, J. Phys.-Condens. Matter 31, 345303 (2019).

    Google Scholar 

  36. M. H. Garner, H. Li, Y. Chen, T. A. Su, Z. Shangguan, D. W. Paley, T. Liu, F. Ng, H. Li, S. Xiao, C. Nuckolls, L. Venkataraman, and G. C. Solomon, Nature 558, 415 (2018).

    ADS  Google Scholar 

  37. H. Nakamura, T. Ohto, T. Ishida, and Y. Asai, J. Am. Chem. Soc. 135, 16545 (2013).

    Google Scholar 

  38. M. Famili, I. M. Grace, Q. Al-Galiby, H. Sadeghi, and C. J. Lambert, Adv. Funct. Mater. 28, 1703135 (2018).

    Google Scholar 

  39. J. A. Malen, P. Doak, K. Baheti, T. D. Tilley, R. A. Segalman, and A. Majumdar, Nano Lett. 9, 1164 (2009).

    ADS  Google Scholar 

  40. J. R. Widawsky, W. Chen, H. Vázquez, T. Kim, R. Breslow, M. S. Hybertsen, and L. Venkataraman, Nano Lett. 13, 2889 (2013).

    ADS  Google Scholar 

  41. H. Sadeghi, S. Sangtarash, and C. Lambert, Nano Lett. 17, 4611 (2017).

    ADS  Google Scholar 

  42. Q. Xu, G. Scuri, C. Mathewson, P. Kim, C. Nuckolls, and D. Bouilly, Nano Lett. 17, 5335 (2017).

    ADS  Google Scholar 

  43. R. Miao, H. Xu, M. Skripnik, L. Cui, K. Wang, K. G. L. Pedersen, M. Leijnse, F. Pauly, K. Wärnmark, E. Meyhofer, P. Reddy, and H. Linke, Nano Lett. 18, 5666 (2018).

    ADS  Google Scholar 

  44. N. D. Lang, and P. Avouris, Phys. Rev. Lett. 81, 3515 (1998).

    ADS  Google Scholar 

  45. C. S. Casari, M. Tommasini, R. R. Tykwinski, and A. Milani, Nanoscale 8, 4414 (2016).

    ADS  Google Scholar 

  46. Z. Zhang, C. Guo, D. J. Kwong, J. Li, X. Deng, and Z. Fan, Adv. Funct. Mater. 23, 2765 (2013).

    Google Scholar 

  47. J. Zeng, and K. Q. Chen, Carbon 104, 20 (2016).

    Google Scholar 

  48. X. Liu, G. Zhang, and Y. W. Zhang, J. Phys. Chem. C 119, 24156 (2015).

    Google Scholar 

  49. M. Bürkle, T. J. Hellmuth, F. Pauly, and Y. Asai, Phys. Rev. B 91, (2015).

  50. X. H. Cao, W. X. Zhou, C. Y. Chen, L. M. Tang, M. Long, and K. Q. Chen, Sci. Rep. 7, 10842 (2017).

    ADS  Google Scholar 

  51. M. Noori, H. Sadeghi, and C. J. Lambert, Nanoscale 9, 5299 (2017).

    Google Scholar 

  52. M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002), arXiv: cond-mat/0110650.

    ADS  Google Scholar 

  53. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).

    ADS  Google Scholar 

  54. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  55. K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010), arXiv: 1003.5255.

    ADS  Google Scholar 

  56. C. X. Zhang, Q. Li, L. M. Tang, K. Yang, J. Xiao, K. Q. Chen, and H. X. Deng, J. Mater. Chem. C 7, 6052 (2019).

    Google Scholar 

  57. Y. Meir, and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

    ADS  Google Scholar 

  58. K. S. Thygesen, Phys. Rev. B 73, 035309 (2006), arXiv: cond-mat/0509317.

    ADS  Google Scholar 

  59. K. K. Saha, T. Markussen, K. S. Thygesen, and B. K. Nikolić, Phys. Rev. B 84, 041412 (2011).

    ADS  Google Scholar 

  60. Y. Xu, X. Chen, J. S. Wang, B. L. Gu, and W. Duan, Phys. Rev. B 81, 195425 (2010).

    ADS  Google Scholar 

  61. Y. Dubi, and M. di Ventra, Rev. Mod. Phys. 83, 131 (2011).

    ADS  Google Scholar 

  62. X. K. Chen, and K. Q. Chen, J. Phys.-Condens. Matter 32, 153002 (2020).

    ADS  Google Scholar 

  63. Z. W. Tan, J. S. Wang, and C. K. Gan, Nano Lett. 11, 214 (2010), arXiv: 1007.1831.

    ADS  Google Scholar 

  64. L. P. Tang, L. M. Tang, D. Wang, H. X. Deng, and K. Q. Chen, J. Phys.-Condens. Matter 30, 465301 (2018).

    Google Scholar 

  65. D. Li, J. He, G. Ding, Q. Q. Tang, Y. Ying, J. He, C. Zhong, Y. Liu, C. Feng, Q. Sun, H. Zhou, P. Zhou, and G. Zhang, Adv. Funct. Mater. 28, 1801685 (2018).

    Google Scholar 

  66. Y. X. Deng, S. Z. Chen, Y. Zeng, Y. Feng, W. X. Zhou, L. M. Tang, and K. Q. Chen, Org. Electron. 63, 310 (2018).

    Google Scholar 

  67. H. S. Kim, T. H. Kim, and Y. H. Kim, Carbon 142, 107 (2019).

    Google Scholar 

  68. A. Milani, A. Lucotti, V. Russo, M. Tommasini, F. Cataldo, A. Li Bassi, and C. S. Casari, J. Phys. Chem. C 115, 12836 (2011).

    Google Scholar 

  69. J. Björk, F. Hanke, C. A. Palma, P. Samori, M. Cecchini, and M. Persson, J. Phys. Chem. Lett. 1, 3407 (2010).

    Google Scholar 

  70. G. Kiršanskas, Q. Li, K. Flensberg, G. C. Solomon, and M. Leijnse, Appl. Phys. Lett. 105, 233102 (2014), arXiv: 1411.1775.

    ADS  Google Scholar 

  71. Y. Xu, X. Chen, B. L. Gu, and W. Duan, Appl. Phys. Lett. 95, 233116 (2009), arXiv: 0910.3267.

    ADS  Google Scholar 

  72. J. Li, Z. H. Zhang, M. Qiu, C. Yuan, X. Q. Deng, Z. Q. Fan, G. P. Tang, and B. Liang, Carbon 80, 575 (2014).

    Google Scholar 

  73. Y. Li, M. Baghernejad, A. G. Qusiy, D. Zsolt Manrique, G. Zhang, J. Hamill, Y. Fu, P. Broekmann, W. Hong, T. Wandlowski, D. Zhang, and C. Lambert, Angew. Chem. Int. Ed. 54, 13586 (2015).

    Google Scholar 

  74. Q. H. Al-Galiby, H. Sadeghi, D. Z. Manrique, and C. J. Lambert, Nanoscale 9, 4819 (2017).

    Google Scholar 

  75. J. Bai, A. Daaoub, S. Sangtarash, X. Li, Y. Tang, Q. Zou, H. Sadeghi, S. Liu, X. Huang, Z. Tan, J. Liu, Y. Yang, J. Shi, G. Mészáros, W. Chen, C. Lambert, and W. Hong, Nat. Mater. 18, 364 (2019).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wu-Xing Zhou or Ke-Qiu Chen.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701602), and the National Natural Science Foundation of China (Grant No. 11674092). The authors would like to thank Enago for the English language review. The work was carried out at the National Supercomputer Center in Changsha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Cao, XH., Jia, PZ. et al. Excellent thermoelectric performance in weak-coupling molecular junctions with electrode doping and electrochemical gating. Sci. China Phys. Mech. Astron. 63, 276811 (2020). https://doi.org/10.1007/s11433-019-1528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1528-y

Keywords

Navigation