Skip to main content

Advertisement

Log in

Roles of TP53 gene in the development of resistance to PI3K inhibitor resistances in CRISPR-Cas9-edited lung adenocarcinoma cells

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The mutation rates of tumor suppressor protein p53 gene (TP53) are high in lung adenocarcinoma and promote the development of acquired drug resistance. The present study evaluated the p53-dependent role in lung cancer cell sensitivity to PI3K-specific inhibitors, PI3K-associated inhibitors, PI3K-non-related inhibitors, and protein-based stimuli using designed p53 mutation. We found that the deletion of p53 key regions from amino acid 96 to 393 with the CRISPR-Cas9 altered multi-dimensional structure and sequencing of p53, probably leading the secondary changes in chemical structures and properties of PI3K subunit proteins or in interactions between p53 and PI3K isoform genes. The p53-dependent cell sensitivity varied among target specificities, drug chemical properties, mechanism-specific signal pathways, and drug efficacies, independently upon the size of molecules. The effects of the designed p53 mutation highly depend upon p53-involved molecular mechanisms in the cell. Our results indicate that lung cancer cell resistance to drug can develop with dynamic formations of p53 mutations changing the cell sensitivity. This may explain the real-time occurrence of cancer cell resistance to drug treatment, during which drugs may induce the new mutations of p53. Thus, it is important to dynamically monitor the formation of new mutations during the therapy and discover new drug resistance–specific targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bi J, Min Z, Yuan H, Jiang Z, Mao R, Zhu T, et al. PI3K inhibitor treatment ameliorates the glucocorticoid insensitivity of PBMCs in severe asthma. Clin Transl Med. 2020;9(1):22. https://doi.org/10.1186/s40169-020-0262-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 2020;19:39–56.

    Article  CAS  Google Scholar 

  • Bykov VJN, Eriksson SE, Bianchi J, Wiman KG. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18(2):89–102.

    Article  CAS  Google Scholar 

  • Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.

    Article  Google Scholar 

  • Cao X, Hou J, An Q, Assaraf YG, Wang X. Towards the overcoming of anticancer drug resistance mediated by p53 mutations. Drug Resist Updat. 2020;49:100671.

    Article  Google Scholar 

  • Chen J, Cao X, An Q, Zhang Y, Li K, Yao W, et al. Inhibition of cancer stem cell like cells by a synthetic retinoid. Nat Commun. 2018;9:1406.

    Article  Google Scholar 

  • Chen SJ. Minimizing off-target effects in CRISPR-Cas9 genome editing. Cell Biol Toxicol. 2019;35(5):399–401. https://doi.org/10.1007/s10565-019-09486-4.

    Article  PubMed  Google Scholar 

  • Chillemi G, Kehrloesser S, Bernassola F, Desideri A, Dotsch V, Levine AJ, et al. Structural evolution and dynamics of the p53 proteins. Cold Spring Harb Perspect Med. 2017;7(4):a028308.

    Article  Google Scholar 

  • Choi SI, Kim SY, Lee JH, Kim JY, Cho EW, Kim IG. Osteopontin production by TM4SF4 signaling drives a positive feedback autocrine loop with the STAT3 pathway to maintain cancer stem cell-like properties in lung cancer cells. Oncotarget. 2017;8(60):101284–97.

    Article  Google Scholar 

  • Chorner PM, Moorehead RA. A-674563, a putative AKT1 inhibitor that also suppresses CDK2 activity, inhibits human NSCLC cell growth more effectively than the pan-AKT inhibitor, MK-2206. PLoS One. 2018;13(2):e0193344.

    Article  Google Scholar 

  • Chung HS, Meng F, Kim JY, McHale K, Gopich IV, Louis JM. Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. Proc Natl Acad Sci U S A. 2017;114(33):E6812–21.

    Article  CAS  Google Scholar 

  • Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med. 2020;9(1):8. https://doi.org/10.1186/s40169-020-0261-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu M, Rao M, Wu K, Wang C, Zhang X, Hessien M, et al. The androgen receptor acetylation site regulates cAMP and AKT but not ERK-induced activity. J Biol Chem. 2004;279(28):29436–49.

    Article  CAS  Google Scholar 

  • Gomes CP, Andrade LALA. PTEN and p53 expression in primary ovarian carcinomas: immunohistochemical study and discussion of pathogenetic mechanisms. Int J Gynecol Cancer. 2006;16(Suppl 1):254–8.

    Article  Google Scholar 

  • Groskreutz DJ, Monick MM, Yarovinsky TO, Powers LS, Quelle DE, Varga SM, et al. Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. J Immunol. 2007;179(5):2741–7.

    Article  CAS  Google Scholar 

  • Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer–is it becoming a reality? Nat Rev Clin Oncol. 2010;7(7):401–14.

    Article  CAS  Google Scholar 

  • Kadel D, Zhang Y, Sun HR, Zhao Y, Dong QZ, Qin LX. Current perspectives of cancer-associated fibroblast in therapeutic resistance: potential mechanism and future strategy. Cell Biol Toxicol. 2019;35(5):407–21. https://doi.org/10.1007/s10565-019-09461-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogaki T, Ohshio I, Kawaguchi M, Kimoto M, Kitae K, Hase H, et al. TP53 gene status is a critical determinant of phenotypes induced by ALKBH3 knockdown in non-small cell lung cancers. Biochem Biophys Res Commun. 2017;488(2):285–90.

    Article  CAS  Google Scholar 

  • Koifman G, Aloni-Grinstein R, Rotter V. p53 balances between tissue hierarchy and anarchy. J Mol Cell Biol. 2019;11(7):553–63.

    Article  CAS  Google Scholar 

  • Lan YL, Zou YJ, Lou JC, Xing JS, Wang X, Zou S, et al. The sodium pump α1 subunit regulates bufalin sensitivity of human glioblastoma cells through the p53 signaling pathway. Cell Biol Toxicol. 2019;35(6):521–39. https://doi.org/10.1007/s10565-019-09462-y.

    Article  CAS  PubMed  Google Scholar 

  • Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 2019;121(9):725–37.

    Article  Google Scholar 

  • Li D, Zhou H, Zeng X. Battling CRISPR-Cas9 off-target genome editing. Cell Biol Toxicol. 2019;35(5):403–6. https://doi.org/10.1007/s10565-019-09485-5.

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Wang S, Liu J. Overexpression of tumor protein p53-regulated apoptosis-inducing protein 1 regulates proliferation and apoptosis of breast cancer cells through the PI3K/Akt pathway. J Breast Cancer. 2019;22(2):172–84.

    Article  Google Scholar 

  • Liu K, Ling S, Lin WC. TopBP1 mediates mutant p53 gain of function through NF-Y and p63/p73. Mol Cell Biol. 2011;31(22):4464–81.

    Article  CAS  Google Scholar 

  • Luo Y. Refining CRISPR-based genome and epigenome editing off-targets. Cell Biol Toxicol. 2019;36:31–49. https://doi.org/10.1007/s10565-019-09481-9.

    Article  Google Scholar 

  • Muller PAJ, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014;25(3):304–17.

    Article  CAS  Google Scholar 

  • Perez-Galan P, Dreyling M, Wiestner A. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood. 2011;117(1):26–38.

    Article  CAS  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.

    Article  CAS  Google Scholar 

  • Schacker M, Seimetz D. From fiction to science: clinical potentials and regulatory considerations of gene editing. Clin Transl Med. 2019;8(1):27. https://doi.org/10.1186/s40169-019-0244-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen K, Cao Z, Zhu R, You L, Zhang T. The dual functional role of MicroRNA-18a (miR-18a) in cancer development. Clin Transl Med. 2019;8(1):32. https://doi.org/10.1186/s40169-019-0250-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skaga E, Kulesskiy E, Brynjulvsen M, Sandberg CJ, Potdar S, Langmoen IA, et al. Feasibility study of using high-throughput drug sensitivity testing to target recurrent glioblastoma stem cells for individualized treatment. Clin Transl Med. 2019;8(1):33. https://doi.org/10.1186/s40169-019-0253-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song D, Tang L, Huang J, Wang L, Zeng T, Wang X. Roles of transforming growth factor-β and phosphatidylinositol 3-kinase isoforms in integrin β1-mediated bio-behaviors of mouse lung telocytes. J Transl Med. 2019a;17(1):431.

    Article  CAS  Google Scholar 

  • Song D, Tang L, Wang L, Huang J, Zeng T, Fang H, et al. Roles of TGFβ1 in the expression of phosphoinositide 3-kinase isoform genes and sensitivity and response of lung telocytes to PI3K inhibitors. Cell Biol Toxicol. 2019b. https://doi.org/10.1007/s10565-019-09487-3.

  • Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat. 2018;38:27–43.

    Article  Google Scholar 

  • Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992;70(4):523–6.

    Article  CAS  Google Scholar 

  • Xiao L, Lan X, Shi X, Zhao K, Wang D, Wang X, et al. Cytoplasmic RAP1 mediates cisplatin resistance of non-small cell lung cancer. Cell Death Dis. 2017;8(5):e2803.

    Article  CAS  Google Scholar 

  • Yan F, Wang W, Zhang J. CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol Toxicol. 2019;35(6):489–92. https://doi.org/10.1007/s10565-019-09489-1.

    Article  PubMed  Google Scholar 

  • Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, et al. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res. 2010;70(2):621–31.

    Article  CAS  Google Scholar 

  • Yu XJ, Han QB, Wen ZS, Ma L, Gao J, Zhou GB. Gambogenic acid induces G1 arrest via GSK3beta-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett. 2012;322(2):185–94.

    Article  CAS  Google Scholar 

  • Zagryazhskaya A, Gyuraszova K, Zhivotovsky B. Cell death in cancer therapy of lung adenocarcinoma. Int J Dev Biol. 2015;59(1–3):119–29.

    Article  CAS  Google Scholar 

  • Zhao H, Wang Y, Yang C, Zhou J, Wang L, Yi K, et al. EGFR-vIII downregulated H2AZK4/7AC though the PI3K/AKT-HDAC2 axis to regulate cell cycle progression. Clin Transl Med. 2020;9(1):10–5. https://doi.org/10.1186/s40169-020-0260-7.

    Article  PubMed  Google Scholar 

  • Zheng Q, Hong S, Huang Y, Zhao H, Yang Y, Hou X, et al. EGFR T790M relative mutation purity predicts osimertinib treatment efficacy in non-small cell lung cancer patients. Clin Transl Med. 2020;9(1):17. https://doi.org/10.1186/s40169-020-0269-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by Operation funding of Shanghai Institute of Clinical Bioinformatics and Shanghai Engineering and Technology Center for Artificial Intelligence of Lung and Heart Diseases from Zhongshan Hospital, the National Nature Science Foundation of China (81873409), and National Key Research and Development Program of Precision Medicine (2017YFC0909500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Cao, Yunfeng Cheng or Xiangdong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Cao, X., Cheng, Y. et al. Roles of TP53 gene in the development of resistance to PI3K inhibitor resistances in CRISPR-Cas9-edited lung adenocarcinoma cells. Cell Biol Toxicol 36, 481–492 (2020). https://doi.org/10.1007/s10565-020-09523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-020-09523-7

Keywords

Navigation