Planta Med 2020; 86(07): 505-515
DOI: 10.1055/a-1135-9066
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antiviral Potential of Spondias mombin L. Leaves Extract Against Herpes Simplex Virus Type-1 Replication Using In Vitro and In Silico Approaches

Emerson M. da S. Siqueira
1   Postgraduate Program in Drug Development and Technological Innovation, Pharmacognosy Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Tábata L. C. Lima
2   Immunology Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Laurita Boff
6   Laboratory of Applied Virology, Department of Pharmaceutical Sciences, UFSC, Florianópolis, SC, Brazil
,
Sarah G. M. Lima
1   Postgraduate Program in Drug Development and Technological Innovation, Pharmacognosy Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Estela M. G. Lourenço
1   Postgraduate Program in Drug Development and Technological Innovation, Pharmacognosy Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
3   Pharmaceutical Chemistry Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Éder G. Ferreira
1   Postgraduate Program in Drug Development and Technological Innovation, Pharmacognosy Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
4   Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, UFRN, Natal, RN, Brazil
,
Euzébio G. Barbosa
3   Pharmaceutical Chemistry Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Paula R. L. Machado
2   Immunology Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Kléber J. S. Farias
2   Immunology Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Leandro de S. Ferreira
5   Quality Control Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
,
Hugo A. de O. Rocha
4   Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, UFRN, Natal, RN, Brazil
,
Cláudia M. O. Simões
6   Laboratory of Applied Virology, Department of Pharmaceutical Sciences, UFSC, Florianópolis, SC, Brazil
,
Silvana M. Zucolotto
1   Postgraduate Program in Drug Development and Technological Innovation, Pharmacognosy Laboratory, Pharmacy Faculty, UFRN, Natal, RN, Brazil
› Author Affiliations
Supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior fellowship
Supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 478661/2010-0
Further Information

Publication History

received 02 October 2019
revised 05 March 2020

accepted 08 March 2020

Publication Date:
04 April 2020 (online)

Abstract

Spondias mobin leaves have been traditionally used for treating cold sores. The study investigated the mechanism of antiherpes action of S. mombin extract, fractions, and geraniin. Different concentrations of samples were used to evaluate the in vitro antiherpes activity (anti-HSV-1) in virucidal, post-infection, attachment, and penetration assays. The mechanism of action of geraniin was investigated considering the glycoproteins gB and gD of HSV-1 surface as potential molecular targets. Molecular docking simulations were carried out for both in order to determine the possible binding mode position of geraniin at the activity sites. The binding mode position was posteriorly optimized considering the flexibility of the glycoproteins. The chemical analysis of samples was performed by LC-MS and revealed the presence of 22 substances, which are hydrolysable tannins, O-glycosylated flavonoids, phenolic acids, and a carbohydrate. The extract, tannin-rich fraction and geraniin showed important in vitro virucidal activity through blocking viral attachment but showed no relevant inhibition of viral penetration. The in silico approaches demonstrated a high number of potential strong intermolecular interactions as hydrogen bonds between geraniin and the activity site of the glycoproteins, particularly the glycoprotein gB. In silico experiments indicated that geraniin is at least partially responsible for the anti-herpes activity through interaction with the viral surface glycoprotein gB, which is responsible for viral adsorption. These results highlight the therapeutic potential of S. mombin anti-herpes treatment and provides support for its traditional purposes. However, further studies are required to validate the antiviral activities in vivo, as well as efficacy in humans.

Supporting Information

 
  • References

  • 1 Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Gottlieb SL, Newman LM. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One 2015; 10: 1-17
  • 2 Garner JA. Herpes simplex virion entry into and intracellular transport within mammalian cells. Adv Drug Deliv Rev 2003; 55: 1497-1513
  • 3 Shukla D, Spear PG. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 2001; 108: 503-510
  • 4 Klysik K, Pietraszek A, Karewicz A, Nowakowska M. Acyclovir in the treatment of herpes viruses – a review. Curr Med Chem 2018; 25: 1-18
  • 5 Piret J, Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 2011; 55: 459-472
  • 6 Erlich KS, Mills J, Chatis P, Mertz GJ, Busch DF, Follansbee SE, Grant RM, Crumpacker CS. Acyclovir-resistant herpes simplex virus infections in patients with the acquired immunodeficiency syndrome. N Engl J Med 1989; 320: 293-296
  • 7 Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 2016; 79: 629-661
  • 8 Reichling J. Plant-microbe interactions and secondary metabolites with antibacterial, antifungal, and antiviral properties. Annu Plant Rev 2018; 39: 214-347
  • 9 Hudson JB. The Choice and Use of Plant Materials. In: Antiviral Compounds from Plants. Boca Raton: CRC Press, Inc; 2018: 53-57
  • 10 Liu C, Cai D, Zhang L, Tang W, Yan R, Guo H, Chen X. Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA. Antiviral Res 2016; 134: 97-107
  • 11 Theisen LL, Erdelmeier CAJ, Spoden GA, Boukhallouk F, Sausy A, Florin L, Muller CP. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza a virus and human papillomavirus. PLoS One 2014; 9: 1-14
  • 12 Flora do Brasil. Spondias in Flora do Brasil 2020 em Construção. Jard Botânico do Rio Janeiro 2019. Available at: http://www.floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB4404 Accessed August 6, 2019
  • 13 Tropicos. Spondias Mombin in Tropicos.org. Missouri Bot Gard 2019. Available at: http://www.tropicos.org/Name/1300270 Accessed August 6, 2019
  • 14 Cabral B, Siqueira EMS, Bitencourt MAO, Lima MCJS, Lima AK, Ortmann CF, Chaves VC, Fernandes-Pedrosa MF, Rocha HAO, Scortecci KC, Reginatto FH, Giordani RB, Zucolotto SM. Phytochemical study and anti-inflammatory and antioxidant potential of Spondias mombin leaves. Brazilian J Pharmacogn 2016; 26: 304-311
  • 15 Corthout J, Pieters LA, Claeys M, Vanden Berghe DA, Vlietinck AJ. Antiviral ellagitannins from Spondias mombin . Phytochemistry 1991; 30: 1129-1130
  • 16 Da Silva ARA, De Morais SM, Marques MMM, De Oliveira DF, Barros CC, De Almeida RR, Vieira ÍGP, Guedes MIF. Chemical composition, antioxidant and antibacterial activities of 2 Spondias species from Northeastern Brazil. Pharm Biol 2012; 50: 740-746
  • 17 Brasil. Resolução RDC 26, de 13 de maio de 2014. Dispõe sobre o registro de medicamentos fitoterápicos e o registro e a notificação de produtos tradicionais fitoterápicos. 2014: 1-28 Available at: http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2014/rdc0026_13_05_2014.pdf Accessed August 10, 2019
  • 18 Silva ARA, Morais SM, Marques MMM, Lima DM, Santos SCC, Almeida RR, Vieira IGP, Guedes MIF. Antiviral activities of extracts and phenolic components of 2 Spondias species against dengue virus. J Venom Anim Toxins Incl Trop Dis 2011; 17: 406-413
  • 19 Yang CM, Cheng HY, Lin TC, Chiang LC, Lin CC. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J Ethnopharmacol 2007; 110: 555-558
  • 20 Lorenzi H, Matos FJ de A. Plantas medicinais no Brasil: nativas e exóticas. 2a Ed. Nova Odessa: Instituto Plantarum; 2008
  • 21 Albuquerque UP, Medeiros PM, Almeida ALS, Monteiro JM, Neto EMFL, Melo JG, Santos JP. Medicinal plants of the caatinga (semiarid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol 2007; 114: 325-354
  • 22 Ayoka AO, Akomolafe RO, Akinsomisoye OS, Ukponmwan OE. Medicinal and economic value of Spondias mombin . African J Biomed Res 2008; 11: 129-136
  • 23 Engels C, Gräter D, Esquivel P, Jiménez VM, Gänzle MG, Schieber A. Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Res Int 2012; 46: 557-562
  • 24 Perera A, Appleton D, Ying LH, Elendran S, Palanisamy UD. Large scale purification of geraniin from Nephelium lappaceum rind waste using reverse-phase chromatography. Sep Purif Technol 2012; 98: 145-149
  • 25 Russo D, Kenny O, Smyth TJ, Milella L, Hossain MB, Diop MS, Rai DK, Brunton NP. Profiling of phytochemicals in tissues from Sclerocarya birrea by HPLC-MS and their link with antioxidant activity. ISRN Chromatogr 2013; 2013: 1-11
  • 26 Sánchez-Rabaneda F, Jáuregui O, Casals I, Andrés-Lacueva C, Izquierdo-Pulido M, Lamuela-Raventós RM. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J Mass Spectrom 2003; 38: 35-42
  • 27 Schmidt S, Zietz M, Schreiner M, Rohn S, Kroh LW, Krumbein A. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry. Rapid Commun Mass Spectrom 2010; 24: 2009-2022
  • 28 Sprenger RF, Cass QB. Characterization of four Phyllanthus species using liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 2013; 1291: 97-103
  • 29 Sudjaroen Y, Hull WE, Erben G, Würtele G, Changbumrung S, Ulrich CM, Owen RW. Isolation and characterization of ellagitannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds. Phytochemistry 2012; 77: 226-237
  • 30 Corthout J, Pieters L, Claeys M, Vanden Berghe D, Vlietinck A. Antiviral caffeoyl esters from Spondias mombin . Phytochemistry 1992; 31: 1979-1981
  • 31 Campadelli-Fiume G, Menotti L, Avitabile E, Gianni T. Viral and cellular contributions to herpes simplex virus entry into the cell. Curr Opin Virol 2012; 2: 28-36
  • 32 Terlizzi ME, Occhipinti A, Luganini A, Maffei ME, Gribaudo G. Inhibition of herpes simplex type 1 and type 2 infections by Oximacro®, a cranberry extract with a high content of A-type proanthocyanidins (PACs-A). Antiviral Res 2016; 132: 154-164
  • 33 Heldwein EE, Krummenacher C. Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 2008; 65: 1653-1668
  • 34 Orlowski P, Tomaszewska E, Gniadek M, Baska P, Nowakowska J, Sokolowska J, Nowak Z, Donten M, Celichowski G, Grobelny J, Krzyzowska M. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One 2014; 9: 1-15
  • 35 Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med 2017; 17: 1-11
  • 36 Cheng HS, Ton SH, Abdul Kadir K. Ellagitannin geraniin: a review of the natural sources, biosynthesis, pharmacokinetics and biological effects. Phytochem Rev 2017; 16: 159-193
  • 37 Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 2006; 313: 217-220
  • 38 Zhang N, Yan J, Lu G, Guo Z, Fan Z, Wang J, Shi Y, Qi J, Gao GF. Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat Commun 2011; 2: 510-577
  • 39 Burleson FG, Chambers TM, Wiedbrauk DL. Virology: A laboratory Manual. San Diego: Academic; 1992
  • 40 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J lmmunological Methods 1983; 65: 55-63
  • 41 Boff L, Silva IT, Argenta DF, Farias LM, Alvarenga LF, Pádua RM, Braga FC, Leite JPV, Kratz JM, Simões CMO. Strychnos pseudoquina A. St. Hil.: a Brazilian medicinal plant with promising in vitro antiherpes activity. J Appl Microbiol 2016; 121: 1519-1529
  • 42 Luger P, Weber M, Kashino S, Amakura Y, Yoshida T, Okuda T, Beurskens G, Dauter Z. Structure of the tannin geraniin based on conventional X-ray data at 295 K and on synchrotron data at 293 and 120 K. Acta Crystallogr Sect B Struct Sci 1998; 54: 687-694
  • 43 Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4: 17
  • 44 Stewart JJP. MOPAC 2016. Stewart Computational Chemistry. Colorado Springs, CO, USA: 2016. Available at http://OpenMOPAC.net. Accessed March 25; 2020
  • 45 Bernstein FC. The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977; 112: 535-542
  • 46 Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31: 455-461
  • 47 Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem 2005; 26: 1701-1718
  • 48 Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010; 31: 671-690
  • 49 Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 2011; 32: 2359-2368