Skip to main content
Log in

Square wave voltammetric determination of pencycuron fungicide and application to commercial formulation

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Pencycuron is a rather new, non-systemic protective fungicide of the phenylurea class, which is used in the treatment of diseases on various crops and whose residues must therefore, be determined with reliable analytical methods. A rapid, sensitive and reproducible square wave stripping and cyclic voltammetric method applied for the first time for the determination of pencycuron fungicide and it has exhibited a well-defined anodic peak at + 1140 mV (vs Ag/AgCl). A linear relationship has been constructed with a dynamic working range of 0.2–10.0 mg/L on a glassy carbon electrode with a limit of determination and limit of quantification of 0.05 mg/L and 0.17 mg/L, respectively. The simultaneous determination of pencycuron and diethofencarb performed with the relative standard deviations of 4.26% and 1.90% and with the relative errors of 6.00% and + 2.00%, respectively. According to the analytical estimations made in the commercial formulation, pencycuron was obtained as 20.21 ± 0.32 with a relative standard deviation of 1.58 % and the relative error of + 1.05%, which means that the accuracy and precision is quite good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Wu, H. Zhao, M. Du, L. Song, X. Xu, Food. Chem. 286, 141 (2019)

    CAS  PubMed  Google Scholar 

  2. R. İnam, C. Bilgin, J. Appl. Electrochem. 43, 425 (2013)

    Google Scholar 

  3. L. Kharbouche, M.D. Gil Garcia, A. Lozano, H. Hamaizi, M. Galera, Talanta 199, 612 (2019)

    CAS  PubMed  Google Scholar 

  4. T. Sarigul, R. İnam, H.Y. Aboul-Enein, Talanta 82, 1814 (2010)

    PubMed  Google Scholar 

  5. Y. Yu, J. You, Z. Sun, G. Li, Z. Ji, S. Zhang, X. Zhou, Anal. Chim. Acta 1055, 44 (2019)

    CAS  PubMed  Google Scholar 

  6. D. De Souza, S.A.S. Machado, J. Anal. Chem. 73, 593 (2018)

    Google Scholar 

  7. A. Ozcan, M. Gurbuz, A. Ozbal, Sens. Actuators B 25, 1517 (2018)

    Google Scholar 

  8. E. Demir, R. İnam., Int. J. Environ. Anal. Chem. 94, 1330 (2014)

    CAS  Google Scholar 

  9. N.Y. Sreedhar, K. Samatha, D. Sujatha, Analyst 125, 1645 (2000)

    CAS  Google Scholar 

  10. L.R. Siara, F. de Lima, C.A.L. Cardoso, G.J. Arruda, Electrochim. Acta 151, 609 (2015)

    CAS  Google Scholar 

  11. T. Sarıgül, R. İnam, E. Demir, H.Y. Aboul-Enein, J. AOAC Int. 97, 995 (2014)

    PubMed  Google Scholar 

  12. I. Losito, A. Amorisco, T. Carbonara, S. Lofiego, F. Palmisano, Anal. Chim. Acta 575, 89 (2006)

    CAS  PubMed  Google Scholar 

  13. J.L. Urraca, J.F. Huertas-Perez, G.A. Cazorla, J. Gracia-Mora, A.M. Garcia-Campana, M.C. Moreno-Bondi, Anal. Bioanal. Chem. 408, 3033 (2016)

    CAS  PubMed  Google Scholar 

  14. H.E. Güdücü, R. İnam, H.Y. Aboul-Enein, J. Liq. Chromatogr. Relat. Technol. 34, 2473 (2011)

    Google Scholar 

  15. J. Barek, J. Fischer, T. Navrátil, K. Pecková, B. Yosypchuk, J. Zima, Electroanalysis 19, 2003 (2007)

    CAS  Google Scholar 

  16. J. Barek, A.G. Fogg, A. Muck, J. Zima, Crit. Rev. Anal. Chem. 31, 291 (2010)

    Google Scholar 

  17. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, J. Colloid Interface Sci. 554, 603 (2019)

    CAS  PubMed  Google Scholar 

  18. Z. Shamsadin-Azad, M.A. Taher, S. Cheraghi, H. Karimi-Maleh, J. Food Meas. Charac. 13, 1781 (2019)

    Google Scholar 

  19. A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, Sens. Actuators B 284, 568 (2019)

    CAS  Google Scholar 

  20. M. Miraki, H. Karimi-Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V.K. Gupta, J. Mol. Liq. 278, 672 (2019)

    CAS  Google Scholar 

  21. H. Guohua, L. Hongyang, J. Zhiming, Z. Danhua, W. Haifang, Biosens Bioelectron. 97, 184 (2017)

    PubMed  Google Scholar 

  22. Z. Xiaohong, Z. Zhidong, L. Xiongwei, L. Jian, H. Guohua, J. Food Meas. Charact. 11, 548 (2016)

    Google Scholar 

  23. H. Feng, Z. Huang, X. Lou, J. Li, G. Hui, Food Anal. Methods 10, 407 (2017)

    Google Scholar 

  24. J. Jiaojiao, G. Yangyang, Z. Gangying, C. Yanping, L. Wei, H. Guohua, Food Chem. 175, 485 (2015)

    PubMed  Google Scholar 

  25. J. Peng, L. Zheng, J. Li, G. Hui, Food Chem. 197, 1168 (2016)

    Google Scholar 

  26. A. Th. J. Koster, Med. Fac. Landbouww. Rijksuniv 48, 611 (1983)

    Google Scholar 

  27. R. Pal, K. Chakrabarti, A. Chakraborty, A. Chowdhury, Chemosphere 60, 1513 (2005)

    CAS  PubMed  Google Scholar 

  28. Y.S. Wang, Y.J. Huang, W.C. Chen, J.H. Yen, J. Hazard. Mater. 172, 84 (2009)

    CAS  PubMed  Google Scholar 

  29. M. Anastassiadou, A. Brancato, L.C. Cabrera, L. Ferreira, L. Greco, S. Jarrah, A. Kazocina, R. Leuschner, J.O. Magrans, I. Miron, R. Pedersen, M. Raczyk, H. Reich, S. Ruocco, A. Sacchi, M. Santos, A. Stanek, J. Tarazona, A. Theobald, A. Verani, EFSA J. 16, 1 (2018)

    Google Scholar 

  30. S.H. Tseng, P.C. Chang, S.S. Chou, J. Food Drug Anal. 10, 127 (2002)

    CAS  Google Scholar 

  31. K. Kawata, H. Mukai, A. Yasuhara, J. Chromatogr. A 710, 243 (1995)

    CAS  Google Scholar 

  32. S.D. Rolle, L. de Cormis, J. Agric. Food Chem. 37, 975 (1989)

    CAS  Google Scholar 

  33. R. Selesovska, M. Herynkova, J. Skopalova, P. Keliskova-Martinkova, L. Janikova, P. Cankar, P. Bednar, J. Chylkova. Electroanalysis 31, 363 (2019)

    CAS  Google Scholar 

  34. T.S. Lima, M.A. La-Scalea, C. Raminelli, F.R. Simoes, E. Franco, G.D. da Silva, M.A. Salvador, P. Homem-de-Mello, H.P.M. Oliveira, L. Codognoto, J. Solid State Electr. 23, 553 (2019)

    CAS  Google Scholar 

  35. I. Aydın, L. Pelit, N. Ertas, Anal. Lett. 51, 209 (2018)

    Google Scholar 

  36. N. Akbas, R. İnam, Anal. Methods 7, 8373 (2015)

    CAS  Google Scholar 

  37. D.K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanism (VCH. Publishers, Inc., Weinheim, 1993)

    Google Scholar 

  38. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    CAS  Google Scholar 

  39. M. Brycht, A. Leniart, J. Robak, B. Burnat, K. Kaczmarska, K. Sipa, S. Skrzypek, Int. J. Environ. Anal. Chem. 97, 1298 (2017)

    CAS  Google Scholar 

  40. E. Demir, R. İnam, Ionics 22, 269 (2016)

    CAS  Google Scholar 

  41. G.J. Arruda, F. De Lima, C.A.L. Cardoso, J. Environ. Sci. Heal. B 51, 534 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ersin Demir or Recai İnam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acer, S., Demir, E. & İnam, R. Square wave voltammetric determination of pencycuron fungicide and application to commercial formulation. Food Measure 14, 2099–2107 (2020). https://doi.org/10.1007/s11694-020-00457-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00457-6

Keywords

Navigation