Skip to main content
Log in

Design and testing of a cost-efficient bioremediation system for tannery effluents using native chromium-resistant filamentous fungi

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In Arequipa (Peru), a small-scale tannery industry cannot afford costly or complicated methods for effluent treatment. In this work, we designed and tested a bubble column bioreactor for tannery effluent treatment based on the native filamentous fungi Penicillium citrinum and Trichoderma viride. The bioreactor construction used low-cost materials, with an easy-to-handle design. The parameters considered for testing were based on current Peruvian legislation. In the bioreactor, P. citrinum successfully reduced the effluent content of sulfides, chemical oxygen demand (COD) and total suspended solids (TSS) and removed nearly 80% of the chromium (VI) after 120 h of reaction. The resulting treated effluent had a composition within the maximum limits permitted by Peruvian legislation. Trichoderma viride also reduced the content of TSS, COD and sulfides, but decreased the chromium (VI) concentration by only ~ 20% after the same reaction time. Both filamentous fungi were able to grow in the experimental conditions used and the bioremediation process occurred with no significant alteration in pH. These findings indicate that a bubble column bioreactor using P. citrinum as a bioremediator agent provides low-cost, effective technology for treating effluent waste produced by artisanal and small-size tannery factories in the region of Arequipa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Taken with permission from Zapana-Huarache et al. (2020)

Fig. 2
Fig. 3
Fig. 4

References

  • Al-Mashhadania MKH, Wilkinson SJ, Zimmerman WB (2015) Airlift bioreactor for biological applications with microbubble mediated transport processes. Chem Eng Sci 137:243–253

    Article  Google Scholar 

  • Amirnia S, Ray MB, Margariti A (2015) Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chem Eng J 264:863–872

    Article  CAS  Google Scholar 

  • Anahid S, Yaghmaei S, Ghobadinejad Z (2011) Heavy metal tolerance of fungi. Sci Iran 18:502–508

    Article  CAS  Google Scholar 

  • Ardestani F (2011) Investigation of the nutrient uptake and cell growth kinetics with Monod and Moser models for Penicillium brevicompactum ATCC 16024 in batch bioreactor. Iran J Energy Environ 2:117–121

    Google Scholar 

  • Awada MF, Kraume M (2011) Mycoflora of activated sludge with MBRs in Berlin, Germany. Int J Environ Ecol Eng 5:348–352

    Google Scholar 

  • Bello MM, Abdul Raman AA, Purushothaman M (2017) Applications of fluidized bed reactors in wastewater treatment—a review of the major design and operational parameters. J Clean Prod 141:1492–1514

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2018) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol 75:259–272

    Article  CAS  Google Scholar 

  • Bravo HMC, Rocío Parker RV, Coral MFC, del Pino LF, Figuero LV (2014) Tratamiento de las aguas residuales del proceso de curtido tradicional y alternativo que utiliza acomplejantes de cromo. Rev Soc Quím Perú 80:183–191

    CAS  Google Scholar 

  • Cardona M, Osorio J, Quintero J (2009) Degradación de colorantes industriales con hongos ligninolíticos. Rev Fac Ing Univ Antioquia 48:27–37

    CAS  Google Scholar 

  • Chaudhary P, Chhokar V, Kumar A, Beniwal V (2017) Bioremediation of tannery wastewater. In: Kumar R et al (eds) Advances in environmental biotechnology. Springer, Singapore, pp 125–144

    Chapter  Google Scholar 

  • Das SK, Guha AK (2009) Biosorption of hexavalent chromium by Termitomyces clypeatus biomass: kinetics and transmission electron microscopic study. J Hazard Mater 167:685–691

    Article  CAS  Google Scholar 

  • De Koning H, Cantanhede A, Benavides L (1994) Desechos peligrosos y salud en América Latina y el Caribe. Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente (CEPIS). Organización Panamericana de la Salud (OPS). http://cidbimena.desastres.hn/docum/crid/Enero2005/CD1/pdf/spa/doc10203/doc10203.htm. Accessed 30 March 2020

  • Dhankhar R, Hooda A (2011) Fungal biosorption: an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491

    Article  CAS  Google Scholar 

  • Espinosa-Ortiz EJ, Rene ER, Pakshirajan K, van Hullebusch ED, Lens NL (2016) Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem Eng J 283:553–571

    Article  CAS  Google Scholar 

  • Faouzi M, Merzouki M, Benlemlih M (2013) Contribution to optimize the biological treatment of synthetic tannery effluent by the sequencing batch reactor. J Mater Environ Sci 4:532–541

    CAS  Google Scholar 

  • Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC (2018) Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere 208:139–148

    Article  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  Google Scholar 

  • Fulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184:7299–7307

    Article  CAS  Google Scholar 

  • Gutterres M, Benvenuti J, Fontoura JT, Ortiz-Monsalve S (2015) Characterization of raw wastewater from tanneries. SLPC J 99:280–287

    CAS  Google Scholar 

  • Kachlishvili E, Pennickx MJ, Tsiklauri N, Elisashvili V (2005) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J Microb Biot 22:391–397

    Article  Google Scholar 

  • Laboratorio de Biotecnología Micológica - Cayetano Heredia University. https://investigacion.cayetano.edu.pe/catalogo/biotecnologia/lbm. Accessed 30 March 2020

  • Lin H, Gao W, Meng F, Liao BQ, Leung KT, Zhao L, Chen J, Hong H (2012) Membrane bioreactors for industrial wastewater treatment: a critical review. Crit Rev Env Sci Technol 42:677–740

    Article  CAS  Google Scholar 

  • Macalupú SZ, Ausejo FU, Mariñas AN (2017) Manual de procedimientos técnicos para el diagnóstico micológico. Ministerio de Salud, Lima

    Google Scholar 

  • Martins LR, Lyra FH, Rugani MMH, Takahashi JA (2015) Bioremediation of metallic ions by eight Penicillium species. J Environ Eng 142:C4015007-1. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000998

    Article  CAS  Google Scholar 

  • Merchuk JC, Glu M (2002) Bioreactors, airlift reactors. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology. Wiley, New York, pp 320–394

    Google Scholar 

  • Ministerio de la Producción (2016) Informe Técnico Legal No 112-2016-PRODUCE/DVMYPE-I/DGAAMI-DEAM. Evaluación de la planta Industrial de la empresa Pieles del Sur E.I.R.L. https://www.produce.gob.pe/produce/descarga/dispositivos-legales/52703_1.pdf6. Accessed 06 May 2019

  • Ministerio de la Producción (2017) Informe Técnico Legal No 00736-2017-PRODUCE/DVMYPE-I/DGAAMI-DEAM. Evaluación de la Actualización del plan de manejo ambiental del Diagnostico Preliminar de la Curtiembre AUSTRA S.R.L. https://www.produce.gob.pe/produce/descarga/dispositivos-legales/76936_1.pdf11. Accessed 06 May 2019

  • Morales-Barrera L, Cristiani-Urbina E (2006) Removal of hexavalent chromium by Trichoderma viride in an airlift bioreactor. Enzyme Microb Technol 40:107–113

    Article  CAS  Google Scholar 

  • Niren P, Jigisha P (2011) Textile wastewater treatment using a UF hollow-fibre submerged membrane bioreactor (SMBR). Environ Technol 32:1247–1257

    Article  CAS  Google Scholar 

  • Noorjahan CM (2014) Physicochemical characteristics, identification of fungi and biodegradation of industrial efffluent. Environ Earth Sci. 4:32-39

  • Nuñez R. (2007). Técnicas in vitro para bioremediación de cromo y plomo. Undergraduate dissertation. Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

  • Nwaigwe KN, Enweremadu CC (2015) Analysis of chemical oxygen demand (COD) removal rate using upflow bioreactor with central substrate dispenser (UBCSD). In: 4th international conference on advances in engineering sciences and applied mathematics (ICAESAM’2015), 8–9 Dec, Kuala Lumpur, Malaysia

  • Otiniano M, Tuesta L, Robles H, Luján M, Chávez M (2017) Biorremediación de cromo VI de aguas residuales de curtiembres por Pseudomonas sp. y su efecto sobre el ciclo celular de Allium cepa. Rev Med Vallejiana 4:32–42

    Google Scholar 

  • Santoyo Figueroa JG, Gonzales Rossel JA, Barboza de las Casas G, Huarcaya Muñiz CY, Arenazas Gonzales ND, Rueda Gutiérrez JE (2017) Informe de evaluación ambiental en el ámbito del Parque Industrial de Río Seco, provincia y departamento de Arequipa, 2017. Informe No 034-2017-OEFA/DE-SDLB-CEAPIO. Organismo de Evaluacion y Fiscalizacion Ambiental (OEFA). Ministerio del Ambiente, Perú

  • Selvarajan R, Sibanda T, Sekar S, Nel WAJ (2019) Industrial effluents harbor a unique diversity of fungal community structures as revealed by high-throughput sequencing analysis. Pol J Environ Stud 28:2353–2362

    Article  Google Scholar 

  • Valix M, Loon L (2003) Adaptive tolerance behavior of fungi in heavy metals. Miner Eng J 16:193–198

    Article  CAS  Google Scholar 

  • Valix M, Tang JY, Malik R (2001) Heavy metal tolerance of fungi. Miner Eng J 14:499–505

    Article  CAS  Google Scholar 

  • Viti C, Marchi E, Decorosi F, Giovannetti L (2014) Molecular mechanisms of Cr(VI) resistance in bacteria and fungi. FEMS Microbiol Rev 38:633–659

    Article  CAS  Google Scholar 

  • Zapana-Huarache SV, Romero-Sánchez CK, Gonza APD, Torres-Huaco FD, Rivera AML (2020) Chromium (VI) bioremediation potential of filamentous fungi isolated from Peruvian tannery industry effluents. Braz J Microbiol 51:271–278. https://doi.org/10.1007/s42770-019-00209-9

    Article  CAS  Google Scholar 

  • Zhang H, Feng J, Chen S, Li B, Sekar R, Zhao Z, Jia J, Wang Y, Kang P (2018) Disentangling the drivers of diversity and distribution of fungal community composition in wastewater treatment plants across spatial scales. Front Microbiol 9:1291. https://doi.org/10.3389/fmicb.2018.01291

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dra. Susana Zurita, head of the Laboratorio de Biotecnología Micológica (Universidad Peruana Cayetano Heredia), for confirming the identification of the fungal species, to Prof. Dr. Stephen Hyslop for reviewing and correcting the English language. This work was funded by the UNSA-INVESTIGA funding program of the Universidad Nacional de San Agustin (Arequipa, Peru).

Funding

This study was financed by UNSA-INVESTIGA (Grant No. IBA-0030-2017) and was part of an undergraduate dissertation by S.V.Z.-H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. D. Torres-Huaco.

Additional information

Editorial responsibility: Josef Trögl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapana-Huarache, S.V., Romero-Sánchez, C.K., Dueñas Gonza, A.P. et al. Design and testing of a cost-efficient bioremediation system for tannery effluents using native chromium-resistant filamentous fungi. Int. J. Environ. Sci. Technol. 17, 3825–3834 (2020). https://doi.org/10.1007/s13762-020-02726-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02726-9

Keywords

Navigation