Skip to main content

Advertisement

Log in

Membrane Processes for Resource Recovery from Anaerobically Digested Livestock Manure Effluent: Opportunities and Challenges

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Membrane techniques have been employed to concentrate livestock manure effluent from anaerobic digestion to produce highly concentrated liquid organic fertilizer. This review aims to provide a comprehensive understanding on the opportunities and challenges of membrane processes in the concentration of digested effluent for their further implementation.

Recent Findings

Anaerobic digestion has been deployed to convert livestock manure into biogas (energy) and digestate with high potential as biofertilizer. Digestate can be separated into a solid and liquid fraction to reduce required capacity for onsite storage. The liquid fraction, known as digested effluent, remains a vexing challenge to digestate management due to the contradiction between its continuous production and seasonal application to farmlands, particularly in developing countries. Recent investigation has demonstrated the promise of membrane techniques for the concentration of digested effluent to recover recycling water and produce nutrient-rich liquid fertilizer. These techniques mainly include hydraulically driven membrane processes (from microfiltration to reverse osmosis), forward osmosis, membrane distillation, and electrodialysis. In most cases, these membrane techniques are hybridized to enhance the concentration efficiency. Nevertheless, the practical application of these membrane processes is hindered by several technical challenges, which mainly include membrane fouling, contaminant enrichment, ammonia volatilization, and high economic input.

Summary

In this paper, we critically reviewed the performance of different membrane processes in the concentration of digested livestock manure effluent. Key technical challenges and their potential countermeasures were elucidated. Furthermore, future perspectives were provided to shed light on further development of membrane concentration techniques in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zhou S, Liang H, Han L, Huang G, Yang Z. The influence of manure feedstock, slow pyrolysis, and hydrothermal temperature on manure thermochemical and combustion properties. Waste Manag. 2019;88:85–95.

    Article  CAS  Google Scholar 

  2. Awasthi MK, Sarsaiya S, Wainaina S, Rajendran K, Kumar S, Quan W, et al. A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: technological challenges, advancements, innovations, and future perspectives. Renew Sust Energ Rev. 2019;111:115–31.

    Article  CAS  Google Scholar 

  3. • Li Y, Xu Z, Xie M, Zhang B, Li G, Luo W. Resource recovery from digested manure centrate: comparison between conventional and aquaporin thin-film composite forward osmosis membranes. J Membr Sci. 2020;593 This study compared the performance of conventional and aquaporin thin-film composite forward osmosis membranes for concentration of digested swine manure effluent. Results from this study provide guidances to the future development of FO membranes for resource recovery from challenging waste streams.

  4. Monfet E, Aubry G, Ramirez AA. Nutrient removal and recovery from digestate: a review of the technology. Biofuels-Uk. 2018;9:247–62.

    Article  CAS  Google Scholar 

  5. Xu Z, Li G, Huda N, Zhang B, Wang M, Luo W. Effects of moisture and carbon/nitrogen ratio on gaseous emissions and maturity during direct composting of cornstalks used for filtration of anaerobically digested manure centrate. Bioresour Technol. 2020;298.

    Article  CAS  Google Scholar 

  6. • Shi L, Xie S, Hu Z, Wu G, Morrison L, Croot P, et al. Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. J Membr Sci. 2019;573:560–9 This study, for the first time, employed electrodialysis reversal to control membrane fouling during nutrient recovery from swine manure digestate in long-term operation.

    Article  CAS  Google Scholar 

  7. Shi L, Simplicio WS, Wu G, Hu Z, Hu H, Zhan X. Nutrient recovery from digestate of anaerobic digestion of livestock manure: a review. Curr Pollut Rep. 2018;4:74–83.

    Article  CAS  Google Scholar 

  8. Sui Q, Liu C, Dong H, Zhu Z. Effect of ammonium nitrogen concentration on the ammonia-oxidizing bacteria community in a membrane bioreactor for the treatment of anaerobically digested swine wastewater. J Biosci Bioeng. 2014;118:277–83.

    Article  CAS  Google Scholar 

  9. Gong W, Li W, Liang H. Application of A/O-MBR for treatment of digestate from anaerobic digestion of cow manure. J Chem Technol Biotechnol. 2010;85:1334–9.

    Article  CAS  Google Scholar 

  10. • Ruan H, Yang Z, Lin J, Shen J, Ji J, Gao C, et al. Biogas slurry concentration hybrid membrane process: Pilot-testing and RO membrane cleaning. Desalination. 2015;368:171–80 This study investigated the performance of various chemical agents and strategies to clean reverse osmosis membranes after concentration of digested livestock manure effluent. Results from this study guide the future studies to develop efficient cleaning regimes for membrane concentration of digested effluent.

    Article  CAS  Google Scholar 

  11. Han Z, Wang L, Duan L, Zhu S, Ye Z, Yu H. The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration. Sep Purif Technol. 2015;156:817–26.

    Article  CAS  Google Scholar 

  12. Adam G, Mottet A, Lemaigre S, Tsachidou B, Trouve E, Delfosse P. Fractionation of anaerobic digestates by dynamic nanofiltration and reverse osmosis: an industrial pilot case evaluation for nutrient recovery. J Environ Chem Eng. 2018;6:6723–32.

    Article  CAS  Google Scholar 

  13. Schneider C, Rajmohan RS, Zarebska A, Tsapekos P, Helix-Nielsen C. Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. Sci Total Environ. 2019;647:1021–30.

    Article  CAS  Google Scholar 

  14. • Kim S, Lee DW, Cho J. Application of direct contact membrane distillation process to treat anaerobic digestate. J Membr Sci. 2016;511:20–8 This study, for the first time, validated the potential of direct contact membrane distillation process (DCMD) to recover nutrient from anaerobically digested effluent.

    Article  CAS  Google Scholar 

  15. Hube S, Eskafi M, Hrafnkelsdottir KF, Bjarnadottir B, Bjarnadottir MA, Axelsdottir S, et al. Direct membrane filtration for wastewater treatment and resource recovery: a review. Sci Total Environ. 2019;710:136375.

    Article  CAS  Google Scholar 

  16. Gong H, Yan Z, Liang KQ, Jin ZY, Wang KJ. Concentrating process of liquid digestate by disk tube-reverse osmosis system. Desalination. 2013;326:30–6.

    Article  CAS  Google Scholar 

  17. Zhao B, Li J, Leu S-Y. An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community. Bioresour Technol. 2014;173:384–91.

    Article  CAS  Google Scholar 

  18. Liu R, Chen L, Wang G, Ye Z. On the pollution with antibiotics, heavy metals and conventional indicators from large-scale pig farms in Jiaxing, China. Environ Eng Manag J. 2016;15:2253–60.

    Article  CAS  Google Scholar 

  19. Cao L, Zhou T, Li Z, Wang J, Tang J, Ruan R, et al. Effect of combining adsorption-stripping treatment with acidification on the growth of Chlorella vulgaris and nutrient removal from swine wastewater. Bioresour Technol. 2018;263:10–6.

    Article  CAS  Google Scholar 

  20. Guo X, Zeng L, Li X, Park H-S. Ammonium and potassium removal for anaerobically digested wastewater using natural clinoptilolite followed by membrane pretreatment. J Hazard Mater. 2008;151:125–33.

    Article  CAS  Google Scholar 

  21. Zhou Z, Chen L, Wu Q, Zheng T, Yuan H, Peng N, et al. The valorization of biogas slurry with a pilot dual stage reverse osmosis membrane process. Chem Eng Res Des. 2019;142:133–42.

    Article  CAS  Google Scholar 

  22. Gerardo ML, Aljohani NHM, Oatley-Radcliffe DL, Lovitt RW. Moving towards sustainable resources: recovery and fractionation of nutrients from dairy manure digestate using membranes. Water Res. 2015;80:80–9.

    Article  CAS  Google Scholar 

  23. Mortola N, Romaniuk R, Cosentino V, Eiza M, Carfagno P, Rizzo P, et al. Potential use of a poultry manure digestate as a biofertiliser: evaluation of soil properties and Lactuca sativa growth. Pedosphere. 2019;29:60–9.

    Article  Google Scholar 

  24. Hjorth M, Christensen KV, Christensen ML, Sommer SG. Solid-liquid separation of animal slurry in theory and practice. A review. Agron Sustain Dev. 2010;30:153–80.

    Article  CAS  Google Scholar 

  25. Li Y, Liu H, Li G, Luo W, Sun Y. Manure digestate storage under different conditions: chemical characteristics and contaminant residuals. Sci Total Environ. 2018;639:19–25.

    Article  CAS  Google Scholar 

  26. Christensen ML, Hjorth M, Keiding K. Characterization of pig slurry with reference to flocculation and separation. Water Res. 2009;43:773–83.

    Article  CAS  Google Scholar 

  27. Li X, Guo J, Dong R, Ahring BK, Zhang W. Properties of plant nutrient: comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci Total Environ. 2016;544:774–81.

    Article  CAS  Google Scholar 

  28. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog. 2003;22:46–56.

    Article  Google Scholar 

  29. Konieczny K, Kwiecinska A, Gworek B. The recovery of water from slurry produced in high density livestock farming with the use of membrane processes. Sep Purif Technol. 2011;80:490–8.

    Article  CAS  Google Scholar 

  30. He Q, Tu T, Yan S, Yang X, Duke M, Zhang Y, et al. Relating water vapor transfer to ammonia recovery from biogas slurry by vacuum membrane distillation. Sep Purif Technol. 2018;191:182–91.

    Article  CAS  Google Scholar 

  31. Shi L, Hu Y, Xie S, Wu G, Hu Z, Zhan X. Recovery of nutrients and volatile fatty acids from pig manure hydrolysate using two-stage bipolar membrane electrodialysis. Chem Eng J. 2018;334:134–42.

    Article  CAS  Google Scholar 

  32. Waeger F, Delhaye T, Fuchs W. The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Sep Purif Technol. 2010;73:271–8.

    Article  CAS  Google Scholar 

  33. Guo X, Jin X. Treatment of anaerobically digested cattle manure wastewater by tubular ultrafiltration membrane. Sep Purif Technol. 2013;48:1023–9.

    CAS  Google Scholar 

  34. Zhan Y, Dong H, Yin F, Yue C. The combined process of paper filtration and ultrafiltration for the pretreatment of the biogas slurry from swine manure. Int J Environ Res Public Health. 2018;15.

    Article  CAS  Google Scholar 

  35. Mohammad AW, Teow YH, Ang WL, Chung YT, Oatley-Radcliffe DL, Hilal N. Nanofiltration membranes review: recent advances and future prospects. Desalination. 2015;356:226–54.

    Article  CAS  Google Scholar 

  36. Wu Z, Zou S, Zhang B, Wang L, He Z. Forward osmosis promoted in-situ formation of struvite with simultaneous water recovery from digested swine wastewater. Chem Eng J. 2018;342:274–80.

    Article  CAS  Google Scholar 

  37. Wang P, Chung T-S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Membr Sci. 2015;474:39–56.

    Article  CAS  Google Scholar 

  38. Jacob P, Phungsai P, Fukushi K, Visvanathan C. Direct contact membrane distillation for anaerobic effluent treatment. J Membr Sci. 2015;475:330–9.

    Article  CAS  Google Scholar 

  39. Yan Z, Liu K, Yu H, Liang H, Xie B, Li G, et al. Treatment of anaerobic digestion effluent using membrane distillation: effects of feed acidification on pollutant removal, nutrient concentration and membrane fouling. Desalination. 2019;449:6–15.

    Article  CAS  Google Scholar 

  40. Xie M, Shon HK, Gray SR, Elimelech M. Membrane-based processes for wastewater nutrient recovery: technology, challenges, and future direction. Water Res. 2016;89:210–21.

    Article  CAS  Google Scholar 

  41. Mondor M, Masse L, Ippersiel D, Lamarche F, Masse DI. Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresour Technol. 2008;99:7363–8.

    Article  CAS  Google Scholar 

  42. Ippersiel D, Mondor M, Lamarche F, Tremblay F, Dubreuil J, Masse L. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J Environ Manag. 2012;95:S165–9.

    Article  CAS  Google Scholar 

  43. Ledda C, Schievano A, Salati S, Adani F. Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: a case study. Water Res. 2013;47:6157–66.

    Article  CAS  Google Scholar 

  44. Hancock NT, Xu P, Roby MJ, Gomez JD, Cath TY. Towards direct potable reuse with forward osmosis: technical assessment of long-term process performance at the pilot scale. J Membr Sci. 2013;445:34–46.

    Article  CAS  Google Scholar 

  45. Nguyen Cong N, Chen S-S, Yang H-Y, Nguyen Thi H. Application of forward osmosis on dewatering of high nutrient sludge. Bioresour Technol. 2013;132:224–9.

    Article  CAS  Google Scholar 

  46. Xie M, Nghiem LD, Price WE, Elimelech M. Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis-membrane distillation process. Environ Sci Technol Lett. 2014;1:191–5.

    Article  CAS  Google Scholar 

  47. Jiang S, Li Y, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ. 2017;595:567–83.

    Article  CAS  Google Scholar 

  48. Anis SF, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: a comprehensive review. Desalination. 2019;452:159–95.

    Article  CAS  Google Scholar 

  49. Tang CY, Chong TH, Fane AG. Colloidal interactions and fouling of NF and RO membranes: a review. Adv Colloid Interf Sci. 2011;164:126–43.

    Article  CAS  Google Scholar 

  50. Al-Amoudi AS. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: a review. Desalination. 2010;259:1–10.

    Article  CAS  Google Scholar 

  51. Zhao S, Zou L, Tang CY, Mulcahy D. Recent developments in forward osmosis: opportunities and challenges. J Membr Sci. 2012;396:1–21.

    Article  CAS  Google Scholar 

  52. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 2009;43:2317–48.

    Article  CAS  Google Scholar 

  53. Rao U, Posmanik R, Hatch LE, Tester JW, Walker SL, Barsanti KC, et al. Coupling hydrothermal liquefaction and membrane distillation to treat anaerobic digestate from food and dairy farm waste. Bioresour Technol. 2018;267:408–15.

    Article  CAS  Google Scholar 

  54. Franken ACM, Nolten JAM, Mulder MHV, Bargeman D, Smolders CA. Wetting criteria for the applicability of membrane distillation. J Membr Sci. 1987;33:315–28.

    Article  CAS  Google Scholar 

  55. Lindstrand V, Sundstrom G, Jonsson AS. Fouling of electrodialysis membranes by organic substances. Desalination. 2000;128:91–102.

    Article  CAS  Google Scholar 

  56. Luo H, Lyu T, Muhmood A, Xue Y, Wu H, Meers E, et al. Effect of flocculation pre-treatment on membrane nutrient recovery of digested chicken slurry: mitigating suspended solids and retaining nutrients. Chem Eng J. 2018;352:855–62.

    Article  CAS  Google Scholar 

  57. Tan YH, Goh PS, Ismail AF, Ng BC, Lai GS. Decolourization of aerobically treated palm oil mill effluent (AT-POME) using polyvinylidene fluoride (PVDF) ultrafiltration membrane incorporated with coupled zinc-iron oxide nanoparticles. Chem Eng J. 2017;308:359–69.

    Article  CAS  Google Scholar 

  58. Yan Z, Yang H, Qu F, Zhang H, Rong H, Yu H, et al. Application of membrane distillation to anaerobic digestion effluent treatment: identifying culprits of membrane fouling and scaling. Sci Total Environ. 2019;688:880–9.

    Article  CAS  Google Scholar 

  59. Wang R, Chen M, Feng F, Zhang J, Sui Q, Tong J, et al. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion. Bioresour Technol. 2017;238:57–69.

    Article  CAS  Google Scholar 

  60. Xu ZC, Song XY, Li Y, Li GX, Luo WH. Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment. Sci Total Environ. 2019;684:23–30.

    Article  CAS  Google Scholar 

  61. Xu Y, Li J, Zhang X, Wang L, Xu X, Xu L, et al. Data integration analysis: heavy metal pollution in China’s large-scale cattle rearing and reduction potential in manure utilization. J Clean Prod. 2019;232:308–17.

    Article  CAS  Google Scholar 

  62. Kim S, Chu KH, Al-Hamadani YAJ, Park CM, Jang M, Kim D-H, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem Eng J. 2018;335:896–914.

    Article  CAS  Google Scholar 

  63. Nasirabadi PS, Saljoughi E, Mousavi SM. Membrane processes used for removal of pharmaceuticals, hormones, endocrine disruptors and their metabolites from wastewaters: a review. Desalin Water Treat. 2016;57:24146–75.

    Article  CAS  Google Scholar 

  64. Chu D, Ye Z-L, Chen S. Interactions among low-molecular-weight organics, heavy metals, and Fe(III) during coagulation of landfill leachate nanofiltration concentrate. Waste Manag. 2020;104:51–9.

    Article  CAS  Google Scholar 

  65. Choi K-J, Kim S-G, Kim S-H. Removal of antibiotics by coagulation and granular activated carbon filtration. J Hazard Mater. 2008;151:38–43.

    Article  CAS  Google Scholar 

  66. Yan T, Ye Y, Ma H, Zhang Y, Guo W, Du B, et al. A critical review on membrane hybrid system for nutrient recovery from wastewater. Chem Eng J. 2018;348:143–56.

    Article  CAS  Google Scholar 

  67. Masse L, Masse DI, Pellerin Y. The effect of pH on the separation of manure nutrients with reverse osmosis membranes. J Membr Sci. 2008;325:914–9.

    Article  CAS  Google Scholar 

  68. Xue W, Tobino T, Nakajima F, Yamamoto K. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry. Water Res. 2015;69:120–30.

    Article  CAS  Google Scholar 

  69. Bolzonella D, Fatone F, Gottardo M, Frison N. Nutrients recovery from anaerobic digestate of agro-waste: techno-economic assessment of full scale applications. J Environ Manag. 2018;216:111–9.

    Article  CAS  Google Scholar 

  70. Gienau T, Bruess U, Kraume M, Rosenberger S. Nutrient recovery from biogas digestate by optimised membrane treatment. Waste Biomass Valorization. 2018;9:2337–47.

    Article  CAS  Google Scholar 

  71. Khan EU, Nordberg A. Membrane distillation process for concentration of nutrients and water recovery from digestate reject water. Sep Purif Technol. 2018;206:90–8.

    Article  CAS  Google Scholar 

  72. Du LL, Zhang ZY, Li GX, Sun QP, Zhang BX. Composting of cornstalks used as filtering materials for the pretreatment of anaerobically digested centrate. Compost Sci Util. 2019;27:81–7.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported under the Key Program of the Natural Science Foundation of Guizhou Province, China (Project No. 20191452), and the National Natural Science Foundation of China (Project No. 51708547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Luo.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xu, Z., Song, X. et al. Membrane Processes for Resource Recovery from Anaerobically Digested Livestock Manure Effluent: Opportunities and Challenges. Curr Pollution Rep 6, 123–136 (2020). https://doi.org/10.1007/s40726-020-00143-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00143-7

Keywords

Navigation