Skip to main content
Log in

Optimization and development of drug loading in hydroxyapatite–polyvinyl alcohol nanocomposites via response surface modeling approach

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present study, parameters affecting the particle size and drug loading of curcumin-loaded hydroxyapatite–polyvinyl alcohol (HAp-PVA) nanocomposites were investigated and optimized. The nanocomposites were synthesized by using chemical precipitation technique, and curcumin was subsequently incorporated into the prepared nanocomposites through an impregnation methodology. Dynamic light scattering and scanning electron microscopy were applied for the evaluation of HAp-PVA nanocomposites. Besides, response surface methodology (carried out using Minitab 16) assessed the correlation between design parameters and experimental data. The independent variables selected in Box–Behnken design were time of milling (X1), polyvinyl alcohol (PVA), concentration (X2) and the concentration of drug (X3), while particle size and drug loading were considered as the responses. The size of nanoparticles ranged from 71 to 123 nm, and drug loading varied between 8.9 and 61.1%. Contour plots and surface plots were benefitted in order to realize the combined effects of different variables. Optimized formulation using response optimizer design demonstrated the particle size of 95 nm and drug loading of 61.24%. From the acquired results, it was concluded that the chemical precipitation method accompanied by the Box–Behnken experimental design approach could be successfully applied to optimize the nanoformulation of curcumin-encapsulated HAp-PVA nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Derakhshankhah, A. Saboury, R. Bazl, H. Tajmir-Riahi, M. Falahati, D. Ajloo, H. Mansoori-Torshizi, A. Divsalar, A. Hekmat, A. Moosavi-Movahedi, J. Iran. Chem. Soc. 9, 737 (2012)

    Article  CAS  Google Scholar 

  2. H. Derakhshankhah, A. Saboury, A. Divsalar, H. Mansouri-Torshizi, I. Bamery, D. Ajloo, A. Moosavi-Movahedi, R. Hosseinzadeh, M. Ganjali, H. Ilkhani, J. Iran. Chem. Soc. 11, 1381 (2014)

    Article  CAS  Google Scholar 

  3. R. Bazl, M.R. Ganjali, H. Derakhshankhah, A.A. Saboury, M. Amanlou, P. Norouzi, Med. Chem. Res. 22, 5453 (2013)

    Article  CAS  Google Scholar 

  4. S. Taranejoo, S. Monemian, M. Moghri, H. Derakhshankhah, J. Appl. Polym. Sci. 131, 39648 (2014)

    Article  Google Scholar 

  5. K. Seidi, H.A. Neubauer, R. Moriggl, R. Jahanban-Esfahlan, T. Javaheri, J. Control. Release 275, 142–161 (2018)

    Article  CAS  Google Scholar 

  6. B. Palazzo, M. Iafisco, M. Laforgia, N. Margiotta, G. Natile, C.L. Bianchi, D. Walsh, S. Mann, N. Roveri, Adv. Funct. Mater. 17, 2180 (2007)

    Article  CAS  Google Scholar 

  7. N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Mater. Sci. Eng. C 33, 943 (2013)

    Article  Google Scholar 

  8. M. Ferraz, F. Monteiro, C. Manuel, J. Appl. Biomater. Biomech. 2, 74 (2004)

    CAS  PubMed  Google Scholar 

  9. A.K. Nayak, Int. J. ChemTech Res. 2, 903 (2004)

    Google Scholar 

  10. J. Lou, W. Hu, R. Tian, H. Zhang, Y. Jia, J. Zhang, L. Zhang, Int. J. Nanomed. 9, 2517 (2014)

    Google Scholar 

  11. R. Raviadaran, D. Chandran, L.H. Shin, S. Manickam, LWT 96, 58 (2018)

    Article  CAS  Google Scholar 

  12. T.F. Alves, M.V. Chaud, D. Grotto, A.F. Jozala, R. Pandit, M. Rai, C.A. dos Santos, AAPS PharmSciTech 19, 225 (2018)

    Article  CAS  Google Scholar 

  13. A. Homayouni, M. Sohrabi, M. Amini, J. Varshosaz, A. Nokhodchi, Mater. Sci. Eng. C 98, 185 (2019)

    Article  CAS  Google Scholar 

  14. D. Baş, İ.H. Boyacı, J. Food Eng. 78, 836 (2007)

    Article  Google Scholar 

  15. H.J. Seltman, Experimental Design and Analysis (2018)

  16. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Ultrason. Sonochem. 21, 242 (2014)

    Article  CAS  Google Scholar 

  17. J. Hao, F. Wang, X. Wang, D. Zhang, Y. Bi, Y. Gao, X. Zhao, Q. Zhang, Eur. J. Pharm. Sci. 47, 497 (2012)

    Article  CAS  Google Scholar 

  18. J. Hao, X. Fang, Y. Zhou, J. Wang, F. Guo, F. Li, X. Peng, Int. J. Nanomed. 6, 683 (2011)

    CAS  Google Scholar 

  19. M. Kavitha, R. Subramanian, K.S. Vinoth, R. Narayanan, G. Venkatesh, N. Esakkiraja, Powder Technol. 271, 167 (2015)

    Article  CAS  Google Scholar 

  20. M. Sadat-Shojai, M.-T. Khorasani, A. Jamshidi, J. Cryst. Growth 361, 73 (2012)

    Article  CAS  Google Scholar 

  21. N. Aslan, Y. Cebeci, Fuel 86, 90 (2007)

    Article  CAS  Google Scholar 

  22. S.C. Ferreira, R. Bruns, H. Ferreira, G. Matos, J. David, G. Brandao, E.P. da Silva, L. Portugal, P. Dos Reis, A. Souza, Anal. Chim. Acta 597, 179 (2007)

    Article  CAS  Google Scholar 

  23. S. Maleki Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.-H. Zarrintan, K. Adibkia, Artif. Cells Nanomed. Biotechnol. 44, 1475 (2016)

    CAS  PubMed  Google Scholar 

  24. A. Ali, S. Ali, M. Aqil, S.S. Imam, A. Ahad, A. Qadir, J. Drug Deliv. Sci. Technol. 52, 713 (2019)

    Article  CAS  Google Scholar 

  25. R.K. Averineni, G.V. Shavi, A.K. Gurram, P.B. Deshpande, K. Arumugam, N. Maliyakkal, S.R. Meka, U. Nayanabhirama, Bull. Mater. Sci. 35, 319 (2012)

    Article  CAS  Google Scholar 

  26. E. Abdel-Aal, A. El-Midany, H. El-Shall, Mater. Chem. Phys. 112, 202 (2008)

    Article  CAS  Google Scholar 

  27. T.V. Safronova, V.I. Putlyaev, A.V. Belyakov, M.A. Shekhirev, MRS Proceedings (Cambridge Univ Press, Cambridge, 2005)

    Google Scholar 

  28. E. Ghasemian, A. Vatanara, A.R. Najafabadi, M.R. Rouini, K. Gilani, M. Darabi, DARU J. Pharm. Sci. 21, 68 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Kermanshah University of Medical Sciences, for the financial support of the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vali ollah Kashani or Hossein Derakhshankhah.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, S., Saboury, A.A., Tajerzadeh, H. et al. Optimization and development of drug loading in hydroxyapatite–polyvinyl alcohol nanocomposites via response surface modeling approach. J IRAN CHEM SOC 17, 1141–1151 (2020). https://doi.org/10.1007/s13738-019-01841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-019-01841-w

Keywords

Navigation