Skip to main content
Log in

Multi-residue determination of 325 pesticides in chicken eggs with EMR-Lipid clean-up by UHPLC–MS/MS and GC–MS/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Eggs are one of the most common foods in the world, and their safety is a major concern for the public. We aimed to develop a novel clean-up approach named Bond Elut Enhanced Matrix Removal-Lipid (EMR-Lipid) for the simultaneous determination of 325 pesticides in the chicken egg by UHPLC–MS/MS and GC–MS/MS. The initial step of extraction was adopted by acetonitrile with 5% formic acid and subsequent adoption of EMR-Lipid d-SPE for further clean-up. Compared with the traditional C18 procedure, EMR-Lipid clean-up achieved a superior degreasing effect. The recoveries of at least 85% of pesticides were in the range of 60–120% at three fortified levels and the relative standard deviation of nearly 96% of analytes were within the limits of criteria. Improved linearity was evaluated using a matrix-matched calibration at eight concentrations in the range 0.1–40 µg/kg; the correlation coefficients of 309 analytes were exceeding 0.99. The new method offered quick, reliable and consistent detection and quantification of 325 pesticide residues, thereby demonstrating promising future for sample testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parrilla VP, Hakme E, Uclés S, Cutillas V, Martínez GM, Mughari AR, Fernándezalba AR (2016) J Chromatogr A 1463:20–31

    Article  Google Scholar 

  2. Deme P, Azmeera T, Prabhavathi Devi BL, Jonnalagadda PR, Prasad RB, Vijaya Sarathi UV (2014) Food Chem 142:144–151. https://doi.org/10.1016/j.foodchem.2013.07.044

    Article  CAS  PubMed  Google Scholar 

  3. Schenck FJ, Donoghue DJ (2000) J Agric Food Chem 48:6412–6415. https://doi.org/10.1021/jf000142c

    Article  CAS  PubMed  Google Scholar 

  4. Luzardo OP, Rodriguez-Hernandez A, Quesada-Tacoronte Y, Ruiz-Suarez N, Almeida-Gonzalez M, Henriquez-Hernandez LA, Zumbado M, Boada LD (2013) Food Chem Toxicol 60:455–462. https://doi.org/10.1016/j.fct.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  5. Bolanos PP, Frenich AG, Vidal JLM (2007) J Chromatogr A 1167:9–17. https://doi.org/10.1016/j.chroma.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  6. Zhu G, Jian Q, Zheng Z, Zhang L, Fu Q, Tian H, Ye G (2014) Pestic Sci Admin. https://doi.org/10.3969/j.issn.1002-5480.2014.04.002

    Article  Google Scholar 

  7. Hildmann F, Gottert C, Frenzel T, Kempe G, Speer K (2015) J Chromatogr A 1403:1–20. https://doi.org/10.1016/j.chroma.2015.05.024

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez F, Pozo OJ, Sancho JV, Bijlsma L, Barreda A, Pitarch E (2006) J Chromatogr A 1109:242–252. https://doi.org/10.1016/j.chroma.2006.01.032

    Article  CAS  PubMed  Google Scholar 

  9. Schiavone A, Corsolini S, Borghesi N, Focardi S (2009) Chemosphere 76:264–269. https://doi.org/10.1016/j.chemosphere.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  10. Ahmad R, Salem NM, Estaitieh H (2010) Chemosphere 78:667–671. https://doi.org/10.1016/j.chemosphere.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  11. Yang LX, Li HL, Zeng FG, Liu YP, Li RF, Chen HJ, Zhao YF, Miao H, Wu YN (2012) J Agric Food Chem 60:1906–1913. https://doi.org/10.1021/jf2043828

    Article  CAS  PubMed  Google Scholar 

  12. dell'Oro D, Casamassima F, Gesualdo G, Iammarino M, Mambelli P, Nardelli V (2014) Int J Food Sci Technol 49:1391–1400. https://doi.org/10.1111/ijfs.12441

    Article  CAS  Google Scholar 

  13. Valsamaki VI, Boti VI, Sakkas VA, Albanis TA (2006) Anal Chim Acta 573–574:195–201. https://doi.org/10.1016/j.aca.2006.03.050

    Article  CAS  PubMed  Google Scholar 

  14. He ZY, Wang YH, Wang L, Peng Y, Wang WW, Liu XW (2017) Anal Bioanal Chem 409:1017–1030. https://doi.org/10.1007/s00216-016-0016-9

    Article  CAS  PubMed  Google Scholar 

  15. Wilkowska A, Biziuk M (2011) Food Chem 125:803–812

    Article  CAS  Google Scholar 

  16. Choi S, Kim S, Shin JY, Kim M, Kim J-H (2015) Food Chem 173:1236–1242. https://doi.org/10.1016/j.foodchem.2014.10.143

    Article  CAS  PubMed  Google Scholar 

  17. Gaweł M, Kiljanek T, Niewiadowska A, Semeniuk S, Goliszek M, Burek O, Posyniak A (2019) Food Chem 282:36–47. https://doi.org/10.1016/j.foodchem.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  18. Song L, Han Y, Yang J, Qin Y, Zeng W, Xu S, Pan C (2019) Food Chem 279:237–245. https://doi.org/10.1016/j.foodchem.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  19. Xu X, Xu X, Han M, Qiu S, Hou X (2019) Food Chem 276:419–426. https://doi.org/10.1016/j.foodchem.2018.10.051

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Song Y, Jia Q, Zhang L, Zhang W, Mu P, Jia Y, Qian Y, Qiu J (2019) J Chromatogr A. https://doi.org/10.1016/j.chroma.2019.01.074

    Article  PubMed  Google Scholar 

  21. Han L, Matarrita J, Sapozhnikova Y, Lehotay SJ (2016) J Chromatogr A 1449:17–29. https://doi.org/10.1016/j.chroma.2016.04.052

    Article  CAS  PubMed  Google Scholar 

  22. Zhu F, Wu XS, Li F, Wang W, Ji WL, Huo ZL, Xu Y (2019) Anal Methods 11:4084–4092. https://doi.org/10.1039/c9ay00937j

    Article  CAS  Google Scholar 

  23. Luo P, Liu X, Kong F, Chen L, Wang Q, Li W, Wen S, Tang L, Li Y (2019) Anal Methods 11:1657–1662. https://doi.org/10.1039/C9AY00275H

    Article  CAS  Google Scholar 

  24. Leandro CC, Hancock P, Fussell RJ, Keely BJ (2007) J Chromatogr A 1144:161–169. https://doi.org/10.1016/j.chroma.2007.01.030

    Article  CAS  PubMed  Google Scholar 

  25. Lee JH, Park S, Jeong WY, Park HJ, Kim HG, Lee SJ, Shim JH, Kim ST, Abd El-Aty AM, Im MH, Choi OJ, Shin SC (2010) Anal Chim Acta 674:64–70. https://doi.org/10.1016/j.aca.2010.06.016

    Article  CAS  PubMed  Google Scholar 

  26. Chung SWC, Chan BTP (2010) J Chromatogr A 1217:4815–4824. https://doi.org/10.1016/j.chroma.2010.05.043

    Article  CAS  PubMed  Google Scholar 

  27. Xia K, Atkins J, Foster C, Armbrust K (2010) J Agric Food Chem 58:5945–5949. https://doi.org/10.1021/jf9034282

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Chen L, Wang H, Zhang X, Zeng Q, Xu H, Sun L, Zhao Q, Ding L (2010) Anal Chim Acta 661:35–41. https://doi.org/10.1016/j.aca.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  29. Xia YQ, Jemal M (2009) Rapid Commun Mass Spectrom 23:2125–2138. https://doi.org/10.1002/rcm.4121

    Article  CAS  PubMed  Google Scholar 

  30. Sakamoto H, Yoshida T, Sanaki T, Shigaki S, Morita H, Oyama M, Mitsui M, Tanaka Y, Nakano T, Mitsutake S, Igarashi Y, Takemoto H (2017) Biochem Biophys Res Commun 482:202–207. https://doi.org/10.1016/j.bbrc.2016.11.041

    Article  CAS  PubMed  Google Scholar 

  31. Chao HC, Chen GY, Hsu LC, Liao HW, Yang SY, Wang SY, Li YL, Tang SC, Tseng YJ, Kuo CH (2017) Anal Chim Acta 971:68–77. https://doi.org/10.1016/j.aca.2017.03.033

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFC1600500) and the Natural Science Foundation of Hubei Province (2016CFB212). None of the funders had any role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangkai Chen or Yonggang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 308 kb)

Supplementary file2 (PDF 237 kb)

10337_2020_3876_MOESM3_ESM.tif

Supplementary Fig. 1 The 245 pesticide residues’ chromatograms in the whole UHPLC-MS/MS chromatography process (TIF 3644 kb)

10337_2020_3876_MOESM4_ESM.tif

Supplementary Fig. 2 The 80 pesticide compounds’ chromatograms in the whole GC-MS/MS chromatography process (TIF 3615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Liu, X., Kong, F. et al. Multi-residue determination of 325 pesticides in chicken eggs with EMR-Lipid clean-up by UHPLC–MS/MS and GC–MS/MS. Chromatographia 83, 593–599 (2020). https://doi.org/10.1007/s10337-020-03876-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03876-1

Keywords

Navigation