Skip to main content
Log in

Antirestriction Protein ArdB (R64) Interacts with DNA

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The antirestriction ArdB protein inhibits the endonuclease activity of type I restriction/modification (RM) systems in vivo; however, the mechanism of inhibition remains unknown. In this study, we showed that recombinant ArdB from Escherichia coli cells co-purified with DNA. When overexpressed in E. coli cells, a portion of ArdB protein formed insoluble DNA-free aggregates. Only native ArdB, but not the ArdBAD141 mutant lacking the antirestriction activity, co-purified with DNA upon anion-exchange and affinity chromatography or total DNA isolation from formaldehyde-treated cells. These observations confirm the hypothesis that ArdB blocks DNA translocation via the R subunits of the R2M2S complex of type I RM enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GST:

glutathione S-transferase

RM:

restriction/modification (system)

References

  1. Belogurov, A. A., Delver, E. P., and Rodzevich, O. V. (1993) Plasmid pKM101 encodes two nonhomologous antirestriction proteins (ArdA and ArdB) whose expression is controlled by homologous regulatory sequences, J. Bacteriol., 175, 4843–4850, doi: https://doi.org/10.1128/jb.175.15.4843-4850.1993.

    Article  CAS  Google Scholar 

  2. Serfiotis-Mitsa, D., Herbert, A. P., Roberts, G. A., Soares, D. C., White, J. H., Blakely, G. W., Uhrin, D., and Dryden, D. T. (2010) The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against type I DNA restriction systems in vivo but not in vitro, Nucleic Acids Res., 38, 1723–1737, doi: https://doi.org/10.1093/nar/gkp1144

    Article  CAS  Google Scholar 

  3. Kudryavtseva, A. A., Osetrova, M. S., Livinyuk, V. Ya., Manukhov, I. V., and Zavilgelsky, G. B. (2017) The C-terminal residue of aspartic acid (D141) is necessary of the antirestriction activity of protein ArdB (R64), Mol. Biol. (Moscow), 51, 831–835.

    CAS  Google Scholar 

  4. Balabanov, V. P., Kudryavtseva, A. A., Melkina, O. E., Pustovoit, K. S., Khrulnova, S. A., and Zavilgelsky, G. B. (2019) ArdB protective activity for unmodified X phage against EcoKI restriction decreases in UV-treated Escherichia coli, Curr. Microbiol., 76, 1374–1378, doi: https://doi.org/10.1007/s00284-019-01755-z

    Article  CAS  Google Scholar 

  5. Pokrovsky, V. S., Anisimova, Yu. N., Davydov, Z. D., Bazhenov, S. V., Bulushova, N. V., Zavilgelsky, G. B., Kotova, V. Y., and Manukhov, I. V. (2019) Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts, Invest. New Drugs, 37, 201–209, doi: https://doi.org/10.1007/s10637-018-0619-4.

    Article  CAS  Google Scholar 

  6. Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif., 41, 207–234, doi: https://doi.org/10.1016/j.pep.2005.01.016.

    Article  CAS  Google Scholar 

  7. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, N. Y.

    Google Scholar 

  8. Goryanin, I. I., Kudryavtseva, A. A., Balabanov, V. P., Biryukova, V. S., Manukhov, I. V., and Zavilgelsky, G. B. (2018) Antirestriction activities of KlcA (RP4) and ArdB (R64) proteins, FEMS Microbiol. Lett., 365, doi: https://doi.org/10.1093/femsle/fny227

  9. Guan, K. L., and Dixon, J. E. (1991) Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion protein with glutathione S-transferase, Anal. Biochem., 192, 262–267, doi: https://doi.org/10.1016/0003-2697(91)90534-z.

    Article  CAS  Google Scholar 

  10. Solomon, M. J., and Varshavsky, A. (1985) Formaldehyde-mediated DNA—protein crosslinking: a probe for in vivo chromatin structures, Proc. Natl. Acad. Sci. USA, 82, 6470–6474, doi: https://doi.org/10.1073/pnas.82.19.6470.

    Article  CAS  Google Scholar 

  11. Hoffman, E. A., Frey, B. L., Smith, L. M., and Auble, D. T. (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes, J. Biol. Chem., 290, 26404–26411, doi: https://doi.org/10.1074/jbc.R115.651679.

    Article  CAS  Google Scholar 

  12. Han, M. J., Yoon, S. S., and Lee, S. Y. (2001) Proteomic analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate), J. Bacteriol., 183, 301–308, doi: https://doi.org/10.1128/JB.183.1.301-308.2001.

    Article  CAS  Google Scholar 

  13. Rosenfeld, J., Capdevielle, J., Guillemoi, J., and Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis, Anal. Biochem., 203, 173–179, doi: https://doi.org/10.1016/0003-2697(92)90061-b.

    Article  CAS  Google Scholar 

  14. Patterson, S. D., and Aebersold, R. (1995) Mass-spectrometric approaches for the identification of gel-separated proteins, Electrophoresis, 16, 1791–1814, doi: https://doi.org/10.1002/elps.11501601299.

    Article  CAS  Google Scholar 

  15. Bazhenov, S. V., Khrulnova, S. A., Konopleva, M. N., and Manukhov, I. V. (2019) Seasonal changes in luminescent intestinal microflora of the fish inhabiting the Bering and Okhotsk seas, FEMS Microbiol. Lett., 366, pii: fnz040, doi: https://doi.org/10.1093/femsle/fnz040

    Article  Google Scholar 

  16. Manukhov, I. V., Melkina, O. E., Goryanin, I. I., Baranova, A. V., and Zavilgelsky, G. B. (2010) The N-terminal domain of the Aliivibrio fischeri LuxR is a target of the GroEL chaperonin, J. Bacteriol., 192, 549–551, doi: https://doi.org/10.1128/JB.00754-10.

    Article  Google Scholar 

  17. Bairoch, A., and Apweiler, R. (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000, Nucleic Acids Res., 28, 45–48, doi: https://doi.org/10.1093/nar/28.1.45.

    Article  CAS  Google Scholar 

  18. Zavilgelsky, G. B., Kotova, V. Yu., and Rastorguev, S. M. (2008) Comparative analysis of antirestriction activity of ArdA (ColIbP9) and Ocr (T7) proteins, Biochemistry (Moscow), 73, 1124–1130.

    Article  Google Scholar 

  19. Balabanov, V. P., Pustovoit, K. S., and Zavilgelsky, G. B. (2012) Comparative analysis of antirestriction activity of R64 ArdA and ArdB proteins, Mol. Biol. (Moscow), 46, 269–275.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kudryavtseva.

Additional information

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 3, pp. 369–377.

Funding

The work was supported by the Russian Foundation for Basic Research (projects nos. 18-3400753 and 19-04-00495) and State Order no. 6.9899. 2017/BCh.

Conflict of interest

The authors declare no conflict of interest in financial or any other area.

Compliance with ethical standards

This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtseva, A.A., Okhrimenko, I.S., Didina, V.S. et al. Antirestriction Protein ArdB (R64) Interacts with DNA. Biochemistry Moscow 85, 318–325 (2020). https://doi.org/10.1134/S0006297920030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920030074

Keywords

Navigation