Skip to main content
Log in

Alternative Naphthalene Metabolic Pathway Includes Formation of ortho-Phthalic Acid and Cinnamic Acid Derivatives in the Rhodococcus opacus Strain 3D

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Naphthalene, as a component of crude oil, is a common environmental pollutant. Biochemical and genetic aspects of naphthalene catabolism have been examined in most detail in the bacteria of Pseudomonas genus. In pseudomonads, the key intermediate in naphthalene degradation is salicylate. In this study, we investigated the ability of Rhodococcus opacus strain 3D to utilize naphthalene as a sole carbon and energy source. The characteristic feature of this strain is the inability to grow in the mineral medium supplemented with salicylate (typical intermediate of naphthalene degradation in Gram-negative bacteria). The absence of salicylate hydroxylase activity and salicylate accumulation in the course of R. opacus 3D cultivation in the mineral medium supplemented with naphthalene indicated existence of an alternative pathway of naphthalene oxidation. At the same time, R. opacus 3D was able to use monoaromatic compounds (salts of gentisic, ortho-phthalic, and 2-hydroxycinnamic acids and coumarin) as growth substrates. Based on the analysis of enzymatic activities, identification of the reaction intermediates, genetic determinants, and growth substrates, we concluded that R. opacus 3D carries out naphthalene degradation through an alternative pathway via formation of ortho-phthalic acid, which is untypical for pseudomonads. Using mass spectrometry, we showed for the first time that salicylic acid associate formed in trace amounts in the process of naphthalene degradation is not further metabolized and accumulated in the growth medium in a form of a dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Cat 1,2-DO:

catechol 1,2- dioxygenase

Cat 2,3-DO:

catechol 2,3-dioxygenase

CFU:

colony-forming unit

GDO:

gentisate dioxygenase

MCI:

muconate cycloisomerase

NDO:

naphthalene 1,2-dioxygenase

PAH:

polycyclic aromatic hydrocarbon

PCA:

protocatechuic acid

PCA 3,4-DO:

pro-tocatechuate 3,4-dioxygenase

S1H:

salicylate 1-hydroxylase

TLC:

thin-layer chromatography

References

  1. Juhasz, A. L., and Naidu, R. (2000) Bioremediation of high molecular weight PAHs: a review of the microbial degradation of benzo[a]pyrene, Int. Biodeterior. Biodegrad., 45, 57–88; doi: https://doi.org/10.1016/S0964-8305(00)00052-4.

    Article  CAS  Google Scholar 

  2. Fonger, G. C., Hakkinen, P., Jordan, S., and Publicker, S. (2014) The National Library of Medicine’s (NLM) Hazardous Substances Data Bank (HSDB): background, recent enhancements and future plans, Toxicology, 325, 209–216; doi: https://doi.org/10.1016/j.tox.2014.09.003.

    Article  CAS  PubMed  Google Scholar 

  3. Davies, J. I., and Evans, W. C. (1964) Oxidative metabolism of naphthalene nucleus by soil pseudomonads — ring fission mechanism, Biochem. J., 91, 251–261; doi: https://doi.org/10.1042/bj0910251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jeffrey, A. M., Yeh, H. J., Jerina, D. M., Patel, T. R., Davey, J. F., and Gibson, D. T. (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida, Biochemistry, 14, 575–584; doi: https://doi.org/10.1021/bi00674a018

    Article  CAS  PubMed  Google Scholar 

  5. Patel, T. R., and Barnsley, E. A. (1980) Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene dioxygenase, J. Bacteriol., 143, 668–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Assinder, S. J., and Williams, P. A. (1988) Comparison of the meta pathway operons on NAH plasmid pWW60-22 and TOL plasmid pWW53-4 and its evolutionary significance, J. Gen. Microbiol., 134, 2769–2778; doi: https://doi.org/10.1099/00221287-134-10-2769.

    CAS  PubMed  Google Scholar 

  7. Rossello-Mora, R. A., Lalucat, J., and Garcia-Valdes, E. (1994) Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains, Appl. Environ. Microbiol., 60, 966–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tay, M., Roizman, D., Cohen, Y., Tolker-Nielsen, T., Givskov, M., and Yang, L. (2014) Draft genome sequence of the model naphthalene-utilizing organism Pseudomonas putida OUS82, Genome Announc., 2, e01161–13; doi: https://doi.org/10.1128/genomeA.01161-13

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yen, K. M., and Serdar, C. M. (1988) Genetics of naphthalene catabolism in pseudomonads, Crit. Rev. Microbiol., 15, 247–268.

    Article  CAS  PubMed  Google Scholar 

  10. Kochetkov, V. V., Balakshina, V. V., Mordukhova, E. A., and Boronin, A. M. (1997) Plasmids encoding naphthalene biodegradation in rhizosphere bacteria of the Pseudomonas genus, Mikrobiologiya, 66, 211–216.

    Google Scholar 

  11. Sevastsyanovich, Y. R., Krasowiak, R., Bingle, L. E. H., Haines, A. S., Sokolov, S. L., Kosheleva, I. A., Leuchuk, A. A., Titok, M. A., Smalla, K., and Thomas, C. M. (2008) Diversity of IncP-9 plasmids of Pseudomonas, Microbiology, 154, 2929–2941; doi: https://doi.org/10.1099/mic.0.2008/017939-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kiyohara, H., Torigoe, S., Kaida, N., Asaki, T., Iida, T., Hayashi, H., and Takizawa, N. (1994) Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82, J. Bacteriol., 176, 2439–2443; doi: https://doi.org/10.1128/jb.176.8.2439-2443.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meyer, S., Moser, R., Neef, A., Stahl, U., and Kampfer, P. (1999) Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes, Microbiology, 145, 1731–1741; doi: https://doi.org/10.1099/13500872-145-7-1731.

    Article  CAS  PubMed  Google Scholar 

  14. Moser, R., and Stahl, U. (2001) Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria, Appl. Microbiol. Biotechnol., 55, 609–618; doi: https://doi.org/10.1007/s002530000489.

    Article  CAS  PubMed  Google Scholar 

  15. Kauppi, B., Lee, K., Carredano, E., Parales, R. E., and Gibson, D. T. (1998) Structure of an aromatic ring-hydroxylating dioxygenase naphthalene 1,2-dioxygenase, Structure, 6, 571–586; doi: https://doi.org/10.1016/s0969-2126(98)00059-8.

    Article  CAS  PubMed  Google Scholar 

  16. Parales, R. E., Parales, J. V., and Gibson, D. T. (1999) Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity, J. Bacteriol., 181, 1831–1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bosch, R., Moore, E. R., Garcia-Valdes, E., and Pieper, D. H. (1999) NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN10, J. Bacteriol., 181, 2315–2322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eaton, R. W., and Chapman, P. J. (1992) Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions, J. Bacteriol., 174, 7542–7554; doi: https://doi.org/10.1128/jb.174.23.7542-7554.1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuenmayor, S. L., Wild, M., Boyes, A. L., and Williams, P. A. (1998) A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2, J. Bacteriol., 180, 2522–2530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hickey, W. J., Sabat, G., Yuroff, A. S., Arment, A. R., and Perez-Lesher, J. (2001) Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2, Appl. Environ. Microbiol., 67, 4603–4609; doi: https://doi.org/10.1128/aem.67.10.4603-4609.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, J., Min, K. R., Kim, Y. C., Kim, C. K., Lim, J. Y., Yoon, H., Min, K. H., Lee, K. S., and Kim, Y. (1995) Cloning of salicylate hydroxylase gene and catechol 2,3-dioxygenase gene and sequencing of an intergenic sequence between the two genes of Pseudomonas putida KF715, Biochem. Biophys. Res. Commun., 211, 382–388; doi: https://doi.org/10.1006/bbrc.1995.1825.

    Article  CAS  PubMed  Google Scholar 

  22. Feng, Y., Khoo, H. E., and Poh, C. L. (1999) Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869, Appl. Environ. Microbiol., 65, 946–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chua, C. H., Feng, Y., Yeo, C. C., Khoo, H. E., and Poh, C. L. (2001) Identification of amino acid residues essential for catalytic activity of gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIB 9867, FEMS Microbiol. Lett., 204, 141–146; doi: https://doi.org/10.1007/s10529-007-9421-7.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, N. Y., Fuenmayor, S. L., and Williams, P. A. (2001) nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism, J. Bacteriol., 183, 700–708; doi: https://doi.org/10.1128/JB.183.2.700-708.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goetz, F. E., and Harmuth, L. J. (1992) Gentisate pathway in Salmonella typhimurium: metabolism of m-hydroxybenzoate and gentisate, FEMS Microbiol. Lett., 76, 45–49; doi: https://doi.org/10.1016/0378-1097(92)90361-q.

    Article  CAS  PubMed  Google Scholar 

  26. Civilini, M., de Bertoldi, M., and Tell, G. (1999) Molecular characterization of Pseudomonas aeruginosa 2NR degrading naphthalene, Lett. Appl. Microbiol., 29, 181–186; doi: https://doi.org/10.1046/j.1365-2672.1999.00613.x.

    Article  CAS  PubMed  Google Scholar 

  27. Starovoitov, I. I., Nefedova, M. Yu., Yakovlev, G. I., Zyakun, A. M., and Adanin, V. M. (1975) Gentisic acid — product of microbial naphthalene oxidation, Izv. Akad. Nauk, Ser. Khim., 9, 2091–2092.

    Google Scholar 

  28. Monticello, D. J., Bakker, D., Schell, M., and Finnerty, W. R. (1985) Plasmid-borne TnS insertion mutations resulting in accumulation of gentisate from salicylate, Appl. Environ. Microbiol., 49, 761–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu, W., and Oriel, P. (1998) Gentisate 1,2-dioxygenase from Haloferax sp. D1227, Extremophiles, 2, 439–446; doi: https://doi.org/10.1007/s007920050090.

    Article  CAS  PubMed  Google Scholar 

  30. Werwath, J., Arfmann, H. A., Pieper, D. H., Timmis, K. N., and Wittich, R. M. (1998) Biochemical and genetic characterization of a gentisate 1,2-dioxygenase from Sphingomonas sp. strain RW5, J. Bacteriol., 180, 4171–4176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uz, I., Duan, Y. P., and Ogram, A. (2000) Characterization of the naphthalene-degrading bacterium Rhodococcus opacus M213, FEMS Microbiol. Lett., 185, 231–238; doi: https://doi.org/10.1111/j.1574-6968.2000.tb09067.x.

    Article  CAS  PubMed  Google Scholar 

  32. Auffret, M., Labbe, D., Thouand, G., Greer, C. W., and Fayolle-Guichard, F. (2009) Degradation of a mixture of hydrocarbons, gasoline, and diesel oil additives by Rhodococcus aetherivorans and Rhodococcus wratislaviensis, Appl. Environ. Microbiol., 75, 7774–7782; doi: https://doi.org/10.1128/AEM.01117-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larkin, M. J., Kulakov, L. A., and Allen, C. C. (2005) Biodegradation and Rhodococcus — masters of catabolic versatility, Curr. Opin. Biotechnol., 16, 282–290; doi: https://doi.org/10.1016/j.copbio.2005.04.007.

    Article  CAS  PubMed  Google Scholar 

  34. Dong, L., Nakashima, N., Tamura, N., and Tamura, T.. (2004) Isolation and characterization of the Rhodococcus opacus thiostrepton-inducible genes tipAL and tipAS: application for recombinant protein expression in Rhodococcus, FEMS Microbiol. Lett., 237, 35–40; doi: https://doi.org/10.1016/j.femsle.2004.06.012

    Article  CAS  PubMed  Google Scholar 

  35. Kulakov, L. A., Chen, S., Allen, C. C., and Larkin, M. J. (2005) Web-type evolution of Rhodococcus gene clusters associated with utilization of naphthalene, Appl. Environ. Microbiol., 71, 1754–1764; doi: https://doi.org/10.1128/AEM.71.4.1754-1764.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grund, E., Denecke, B., and Eichenlaub, R. (1992) Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4, Appl. Environ. Microbiol., 58, 1874–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Allen, C., Boyd, D., and Larkin, M. (1997) Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038, Appl. Environ. Microbiol., 63, 151–155.

    Article  CAS  Google Scholar 

  38. Larkin, M. J., and Day, M. J. (1986) The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCBI12042 and 12043) and Rhodococcus sp. (NCIB12038) from garden soil, J. Appl. Bacteriol., 60, 233–242; doi: https://doi.org/10.1111/j.1365-2672.1986.tb01078.x.

    Article  CAS  PubMed  Google Scholar 

  39. Gorlatov, S. N., Mal’tseva, O. V., Shevchenko, V. L., and Golovleva, L. A. (1989) Degradation of chlorophenols by the Rhodococcus erythropolis culture, Mikrobiologiya, 58, 802–806.

    CAS  Google Scholar 

  40. Chernyavskaya, M. I. (2016) Characterization of strains of naphthalene-utilizing bacteria of the Rhodococcus genus, Works BSU. Physiol. Biochem. Mol. Basis Funct. Biosyst., 11, 190–197.

    Google Scholar 

  41. Plotnikova, E. G., Rybkina, D. O., Anan’ina, L. N., Yastrebova, O. V., and Demakov, V. A. (2006) Characteristics of microorganisms isolated from technogenic soil in Prikam’ye, Ekologiya, 4, 261–268.

    Google Scholar 

  42. Izmalkova, T. Yu., Gafarov, A. B., Sazonova, O. I., Sokolov, S. L., Kosheleva, I. A., and Boronin, A. M. (2018) Diversity of oil-degrading microorganisms in the Gulf of Finland (Baltic Sea) in spring and in summer, Microbiology, 87, 261–271; doi: https://doi.org/10.1134/S0026261718020054.

    Article  CAS  Google Scholar 

  43. Anokhina, T. O., Volkova, O. V., Puntus, I. F., Filonov, A. E., Kochetkov, V. V., and Boronin, A. M. (2006) Plant growth-promoting Pseudomonas bearing catabolic plasmids: naphthalene degradation and effect on plants, Process Biochem., 41, 2417–2423; doi: https://doi.org/10.1016/j.procbio.2006.06.026.

    Article  CAS  Google Scholar 

  44. Lane, D. J. (1991) 16S/23S rRNA sequencing, in Nucleic Acid Techniques in Bacterial Systematic (Stackebrandt, E., and Goodfellow, M., eds.) John Wiley and Sons, NY, pp. 115–175.

    Google Scholar 

  45. Subashchandrabose, S. R., Venkateswarlu, K., Naidu, R., and Megharaj, M. (2019) Biodegradation of high-molecular-weight PAHs by Rhodococcus wratislaviensis strain 9: overexpression of amidohydrolase induced by pyrene and BaP, Sci. Total Environ., 651, 813–821; doi: https://doi.org/10.1007/978-3-030-24035-63.

    Article  CAS  PubMed  Google Scholar 

  46. Choi, K. Y., Kim, D., Sul, W. J., Chae, J. C., Zylstra, G. J., Kim, Y. M., and Kim, E. (2005) Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17, FEMS Microbiol. Lett., 252, 207–213; doi: https://doi.org/10.1016/j.femsle.2005.08.045.

    Article  CAS  PubMed  Google Scholar 

  47. Kulakov, L. A., Delcroix, V. A., Larkin, M. J., Ksenzenko, V. N., and Kulakova, A. N. (1998) Cloning of new Rhodococcus extradiol dioxygenase genes and study of their distribution in different Rhodococcus strains, Microbiology, 144, 955–963; doi: https://doi.org/10.1099/00221287-144-4-955.

    Article  CAS  PubMed  Google Scholar 

  48. Li, C., Zhang, C., Song, G., Liu, H., Sheng, G., Ding, Z., Wang, Z., Sun, Y., Xu, Y., and Chen, J. (2016) Characterization of a protocatechuate catabolic gene cluster in Rhodococcus ruber OA1 involved in naphthalene degradation, Ann. Microbiol., 66, 469–478; doi: https://doi.org/10.1007/s13213-015-1132-z.

    Article  CAS  Google Scholar 

  49. Solyanikova, I. P., Borzova, O. V., Emel’yanova, E. V., Shumkova, E. S., Prisyazhnaya, N. V., Plotnikova, N. V., and Golovleva, L. A. (2016) Dioxygenases of chlorobiphenyl-degrading species Rhodococcus wratislaviensis G10 and chlorophenol-degrading species induced in benzoate-grown cells and genes potentially involved in these processes, Biochemistry (Moscow), 81, 986–998; doi: https://doi.org/10.1134/S000629791609008X.

    Article  CAS  Google Scholar 

  50. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673–4680; doi: https://doi.org/10.1093/nar/22.22.4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dua, R. D., and Meera, S. (1981) Purification and characterization of naphthalene oxygenase from Corynebacterium renale, Eur. J. Biochem., 120, 461–465; doi: https://doi.org/10.1111/j.1432-1033.1981.tb05724.x

    Article  CAS  PubMed  Google Scholar 

  52. Shamsuzzaman, K. M., and Barnsley, E. A. (1974) The regulation of naphthalene oxygenase in pseudomonads, J. Gen. Microbiol., 83, 165–170; doi: https://doi.org/10.1099/00221287-83-1-165.

    Article  CAS  PubMed  Google Scholar 

  53. Hegeman, G. D. (1966) Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type, J. Bacteriol., 91, 1140–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crawford, R. L., Hutton, S. W., and Chapman, P. J. (1975) Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis, J. Bacteriol., 121, 794–799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fujisawa, H., and Hayaishi, O. (1968) Protocatechuate 3,4-dioxygenase. I. Crystallization and characterization, J. Biol. Chem., 243, 2673–2681.

    CAS  PubMed  Google Scholar 

  56. Schlomann, M., Schmidt, E., and Knackmuss, H. J. (1990) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria, J. Bacteriol., 172, 5112–5118; doi: https://doi.org/10.1128/jb.172.9.5112-5118.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kulakova, A. N. (1988) Nature of Genetic Control of Naphthalene and Salicylic Acid Catabolism in the Pseudomonas putida BSA202 Strain: Candidate dissertation [in Russian], Institute of Biochemistry and Physiology of Microorganisms, Pushchino.

  58. Pathak, A., Chauhan, A., Blom, J., Indest, K. J., Jung, C. M., Stothard, P., Bera, G., Green, S. J., and Ogram, A. (2016) Comparative genomics and metabolic analysis reveals peculiar characteristics of Rhodococcus opacus strain M213 particularly for naphthalene degradation, PLoS One, 11, e0161032; doi: https://doi.org/10.1371/journal.pone.0161032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Martinkova, L., Uhnakova, B., Patek, M., Nesvera, J., and Kren, V. (2009) Biodegradation potential of the genus Rhodococcus, Environ. Int., 35, 162–177; doi: https://doi.org/10.1016/j.envint.2008.07.018

    Article  CAS  PubMed  Google Scholar 

  60. McLeod, M. P., Warren, R. L., Hsiao, W. W., Araki, N., Myhre, M., Fernandes, C., Miyazawa, D., Wong, W., Lillquist, A. L., Wang, D., Dosanjh, M., Hara, H., Petrescu, A., Morin, R. D., Yang, G., Stott, J. M., Schein, J. E., Shin, H., Smailus, D., Siddiqui, A. S., Marra, M. A., Jones, S. J., Holt, R., Brinkman, F. S., Miyauchi, K., Fukuda, M., Davies, J. E., Mohn, W. W., and Eltis, L. D. (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse, Proc. Natl. Acad. Sci. USA, 103, 15582–15587; doi: https://doi.org/10.1073/pnas.0607048103.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kulakova, A. N., Reid, K. A., Larkin, M. J., Allen, C. C., and Kulakov, L. A. (1996) Isolation of Rhodococcus rhodochrous NCIMB 13064 derivatives with new biodegradative abilities, FEMS Microbiol. Lett., 145, 227–231; doi: https://doi.org/10.1111/j.1574-6968.1996.tb08582.x.

    Article  CAS  PubMed  Google Scholar 

  62. Anastasi, E., MacArthur, I., Scortti, M., Alvarez, S., Giguere, S., and Vazquez-Boland, J. A. (2016) Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi, Genome Biol. Evol., 8, 3140–3148; doi: https://doi.org/10.1007/s00203-019-01695-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Annweiler, E., Richnow, H. H., Antranikian, G., Hebenbrock, S., Garms, C., Franke, S., Francke, W., and Michaelis, W. (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans, Appl. Environ. Microbiol., 66, 518–523; doi: https://doi.org/10.1128/aem.66.2.518-523.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bubinas, A., Giedraityte, G., Kalediene, L., Nivinskiene, O., and Butkiene, R. (2008) Degradation of naphthalene by thermophilic bacteria via a pathway through protocatechuic acid, Cent. Eur. J. Biol., 3, 61–68; doi: https://doi.org/10.2478/s11535-007-0042-x.

    CAS  Google Scholar 

  65. Van Herwijnen, R., Springael, D., Slot, P., Govers, H. A., and Parsons, J. A. (2003) Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid, Appl. Environ. Microbiol., 69, 186–190; doi: https://doi.org/10.1128/aem.69.1.186-190.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. M. I. Chernyavskaya (Belarusian State University, Minsk, Republic of Belarus) for kindly providing R. pyridinivorans 5Ap (L5A-BSU) strain and to Dr. E. G. Plotnikova (Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences, Perm, Russia) for kindly providing R. wratislaviensis G10 strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Solyanikova.

Additional information

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 3, pp. 412–427.

Funding

This work was supported by the Russian Foundation for Basic Research (project 18-34-00964).

Conflict of interest

The authors declare no conflict of interest in financial or any other sphere.

Ethical approval

This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anokhina, T.O., Esikova, T.Z., Gafarov, A.B. et al. Alternative Naphthalene Metabolic Pathway Includes Formation of ortho-Phthalic Acid and Cinnamic Acid Derivatives in the Rhodococcus opacus Strain 3D. Biochemistry Moscow 85, 355–368 (2020). https://doi.org/10.1134/S0006297920030116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920030116

Keywords

Navigation