Skip to main content
Log in

Passive–active integrators chaotic oscillator with anti-parallel diodes: analysis and its chaos-based encryption application to protect electrocardiogram signals

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An autonomous passive–active integrators oscillator with anti-parallel diodes is proposed and analysed in this paper. It consists of anti-parallel diodes and two main blocks: A second-order passive RLC integrator and a first-order active RC integrator. The existence of two Hopf bifurcations is established during the stability analysis of the unique equilibrium point. For a suitable choice of the circuit parameters, the proposed oscillator can generate periodic oscillations, one-scroll, bistable chaotic attractors and antimonotonicity. The electronic circuit realization of the proposed oscillator is carried out to confirm results found during the numerical simulations. A good qualitative agreement is illustrated between the numerical simulations and experimental results. In addition, chaos-based encryption application to protect electrocardiogram (ECG) signals for secure transmission of medical information is performed using the proposed oscillator in chaotic regime. The ECG signals are successfully encrypted and the original ECG signal is successfully decrypted from noisy ECG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Platt, C., & Jansson, F. (2017). Encyclopedia of electronic components. (Vol. 3., 6, 10 Ed.). McGraw-Hill, Encyclopedia of Science and Technology, ISBN 97814493341852. 1

  2. Schubert, T. F., Jr., & Kim, E. M. (2016). Fundamentals of electronics: Book 4 oscillators and advanced electronics topics. Synthesis Lectures on Digital Circuits and Systems,11(2), 1–266.

    Google Scholar 

  3. Elwakil, A. S., & Kennedy, M. P. (2001). Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,48(3), 289–307.

    MathSciNet  MATH  Google Scholar 

  4. Tamasevicius, A., Mykolaitis G., & Cenys, A. (1998). Chaos diode. In IEEE proceedings—circuits, devices and systems (vol. 145, No. 5, pp. 361–362).

  5. Abarbanel, H. D. I., Brown, R., & Kadtke, J. B. (1990). Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. Physical Review A,41, 1782–1807.

    MathSciNet  Google Scholar 

  6. Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Boca Raton: CRC Press.

    MATH  Google Scholar 

  7. Toli, I. M., Mosekilde, E., & Sturis, J. (2000). Modeling the insulin glucose feedback system: The significance of pulsatile insulin secretion. Journal of Theoretical Biology,207, 361–375.

    Google Scholar 

  8. Wei, Z., Moroz, I., Sprott, J. C., Akgul, A., & Zhang, W. (2017). Hidden hyperchaos and electronic circuit application in a 5d self-exciting homopolar disc dynamo. Chaos, an Interdisciplinary Journal of Nonlinear Science,27, 033101–0331012.

    MathSciNet  MATH  Google Scholar 

  9. Ma, J., Wang, Q.-Y., Jin, W.-Y., & Xia, Y.-F. (2018). Control chaos in hindmarshrose neuron by using intermittent feedback with one variable. Chinese Physics Letters,25, 3582–3585.

    Google Scholar 

  10. Hemati, N. (1994). Strange attractors in brushless dc motors. IEEE Transaction on circuit and System,41, 40–45.

    Google Scholar 

  11. Kocarev, L., & Lian, S. (2011). Chaos-based cryptography: Theory, algorithms and applications (1st ed.). Berlin: Springer.

    MATH  Google Scholar 

  12. Gatta, M. T., & Al-latief, S. T. A. (2018). Medical image security using modified chaos-based cryptography approach. Journal of Physics: Conference Series,1003(1), 012036.

    Google Scholar 

  13. Zhao, Q., Meng, F., Guo, Y., & Shi, W. (2018). Experimental demonstration of message transmission over an optical fiber link modulated by an ultra-wideband carrier generated by a chaotic laser diode. JOSA B,35(7), 1642–1648.

    Google Scholar 

  14. Sotner, R., Jerabek, J., Herencsar, N., Petrzela, J., Vrba, K., & Kincl, Z. (2014). Linearly tunable quadrature oscillator derived from LCcolpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integrated Circuits and Signal Processing,81, 121–136.

    Google Scholar 

  15. Muthuswamy, B., & Chua, L. O. (2010). Simplest chaotic circuit. International Journal of Bifurcation and Chaos,20, 1567–1580.

    Google Scholar 

  16. Teng, L., Iu, H. H. C., Wang, X., & Wang, X. (2014). Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dynamics,77, 231–241.

    Google Scholar 

  17. Karthikeyan, R., Anitha, K., & Prakash, D. (2018). Difference equations of a memristor higher order hyperchaotic oscillator. African Journal of Science, Technology, Innovation and Development,10, 279–285.

    Google Scholar 

  18. Fortuna, L., Frasca, M., & Xibilia, M. G. (2009). World scientific series on nonlinear science series A: Chua’s circuit implementations (Yesterday, Today and Tomorrow). The four-element Chua’s circuit. Singapore: World Scientific.

    Google Scholar 

  19. Njah, A. N., & Vincent, U. E. (2009). Synchronization and anti-synchronization of chaos in an extended bonhffervan der pol oscillator using active control. Journal of Sound and Vibration,319, 41–49.

    Google Scholar 

  20. Trejo-Guerra, R., Tlelo-Cuautle, E., Sanchez-Lopez, M., Munoz-Pacheco, J. M., & Cruz-Hernandez, C. (2010). Realization of multiscroll chaotic attractors by using current feedback operational amplifiers. Revista Mexicana de Fisica,56, 268–274.

    Google Scholar 

  21. Sprott, J. C. (2000). Simple chaotic systems and circuits. American Journal of Physics,68, 758–763.

    Google Scholar 

  22. Srisuchinwong, B., & Munmuangsaen, B. (2012). Four current-tunable chaotic oscillators in set of two diode-reversible pairs. Electronics Letters,48, 1051–1053.

    Google Scholar 

  23. San-Um, W., Suksiri, B., & Ketthong, P. (2014). A simple RLCC-diode-op amp chaotic oscillator. International Journal of Bifurcation and Chaos,24, 1450155–1450161.

    MATH  Google Scholar 

  24. Sprott, J. C. (1997). Simplest dissipative chaotic flow. Physics Letters A,228(4–5), 271–274.

    MathSciNet  MATH  Google Scholar 

  25. Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A,266(1), 19–23.

    Google Scholar 

  26. Srisuchinwong, B., & Treetanakorn, R. (2014). Current-tunable chaotic jerk circuit based on only one unity-gain amplifier. Electronics Letters,50(24), 1815–1817.

    Google Scholar 

  27. Pham, V. T., Volos, C., Jafari, S., Wang, X., & Kapitaniak, T. (2016). A simple chaotic circuit with a light-emitting diode. Optoelectronics and Advanced Materials Rapid Communications,10(9–10), 640–646.

    Google Scholar 

  28. Kengne, J. (2015). Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. International Journal of Bifurcation and Chaos,25(04), 1550052.

    MathSciNet  Google Scholar 

  29. Kengne, J., Tabekoueng, Z. N., & Fotsin, H. B. (2016). Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Communications in Nonlinear Science and Numerical Simulation,36, 29–44.

    MathSciNet  Google Scholar 

  30. Mboupda Pone, J. R., Kingni, S. T., Kol, G. R., & Pham, V. T. (2019). Hopf bifurcation, antimonotonicity and amplitude controls in the chaotic Toda jerk oscillator: Analysis, circuit realization and combination synchronization in its fractional-order form. Automatika,60(2), 149–161.

    Google Scholar 

  31. Elwakil, A. S., & Kennedy, M. P. (2000). A semi-systematic procedure for producing chaos from sinusoidal oscillators using diode-inductor and FET-capacitor composites. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,47(4), 582–590.

    Google Scholar 

  32. Banerjee, T., Karmakar, B., & Sarkar, B. C. (2012)., Chaotic electronic oscillator from single amplifier biquad. AEU-International Journal of Electronics and Communications,66(7), 593–597.

    Google Scholar 

  33. Njitacke, Z. T., & Kengne, L. K. (2017). Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos, Solitons and Fractals,105, 77–91.

    MathSciNet  Google Scholar 

  34. Leutcho, G. D., Kengne, J., & Kamdjeu Kengne, L. (2018). Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors. Chaos, Solitons and Fractals,107, 67–87.

    MathSciNet  MATH  Google Scholar 

  35. Kengne, J., Njitacke, Z. T., Nguomkam Negou, A., Fouodji Tsostop, M., & Fotsin, H. B. (2016). Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. International Journal of Bifurcation and Chaos,26(05), 1650081.

    MATH  Google Scholar 

  36. Kingni, S. T., Pone, J. R. M., Kuiate, G. F., & Pham, V. T. (2019). Coexistence of attractors in integer-and fractional-order three-dimensional autonomous systems with hyperbolic sine nonlinearity: Analysis, circuit design and combination synchronisation. Pramana,93(1), 12.

    Google Scholar 

  37. Volos, C., Akgul, A., Pham, V. T., Stouboulos, I., & Kyprianidis, I. (2017). A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dynamics,89(2), 1047–1061.

    Google Scholar 

  38. Bao, B., Wu, H., Xu, L., Chen, M., & Hu, W. (2018). Coexistence of multiple attractors in an active diode pair based Chua’s circuit. International Journal of Bifurcation and Chaos,28(02), 1850019.

    MathSciNet  MATH  Google Scholar 

  39. Chen, C. K., Lin, C. L., Chiang, C. T., & Lin, S. L. (2012). Personalized information encryption using ECG signals with chaotic functions. Information Sciences,193, 125–140.

    Google Scholar 

  40. El Assad, S., & Farajallah, M. (2016). A new chaos-based image encryption system. Signal Processing: Image Communication,41, 144–157.

    Google Scholar 

  41. Alawida, M., Samsudin, A., The, J. S., & Alkhawaldeh, R. S. (2019). A new hybrid digital chaotic system with applications in image encryption. Signal Processing,160, 45–58.

    Google Scholar 

  42. Roy, A., Misra, A. P., & Banerjee, S. (2019). Chaos-based image encryption using vertical-cavity surface-emitting lasers. Optik-International Journal of for Light and Electron Optics,176, 119–131.

    Google Scholar 

  43. Liu, H., Kadir, A., & Li, Y. (2016). Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Optik-International Journal of for Light and Electron Optics,127, 7431–7438.

    Google Scholar 

  44. Azzaz, M. S., Tanougast, C., Sadoudi, S., & Bouridane, A. (2013). Synchronized hybrid chaotic generators: application to real-time wireless speech encryption. Communications in Nonlinear Science and Numerical Simulation,18, 2035–2047.

    MathSciNet  MATH  Google Scholar 

  45. Martín del Rey, A., Hernández Pastora, J. L., & Rodríguez, S. G. (2016). 3D medical data security protection. Expert Systems with Application,54, 379–386.

    Google Scholar 

  46. Chen, X., & Hu, C. J. (2017). Adaptive medical image encryption algorithm based on multiple chaotic mapping. Saudi Journal of Biological Sciences,24, 1821–1827.

    Google Scholar 

  47. İsmail, S. M., Said, L. A., Radwan, A. G., Madian, A. H., & Abu-Elyazeed, M. F. (2018). Generalized double-humped logistic map-based medical image encryption. Journal of Advanced Research,10, 85–98.

    Google Scholar 

  48. Bhatnagar, G., & Wu, Q. M. J. (2015). A novel chaos-based secure transmission of biometric data. Neurocomputing,147, 444–455.

    Google Scholar 

  49. Pandey, A., Singh, B., Saini, B. S., & Sood, N. (2019). A novel fused coupled chaotic map based confidential data embedding-then-encryption of electrocardiogram signal. Biocybernetics and Biomedical Engineering,39, 282–300.

    Google Scholar 

  50. Moosavi, S. R., Nigussie, E., Virtanen, S., & Isoaho, J. (2017). Cryptographic key generation using ECG signals. In: 14th IEEE annual consumer communications and networking conference (CCNC) (pp. 2331–9860).

  51. Tuncer, S. A., & Kaya, T. (2018). True random number generation from bioelectrical and physical signals. In: Computational and mathematical methods in medicine (Vol. 2018, Article ID 3579275).

  52. Millman, J. (1967). Electronic devices and circuits [by] Jacob Millman [and] Christos C. Halkias: McGraw-Hill.

    Google Scholar 

  53. Manoj, J., & Ashish, R. (2019). New simple chaotic and hyperchaotic system with an unstable node. International Journal of Electronics and Communications (AEÜ),108(2019), 1–9.

    Google Scholar 

  54. Bier, M., & Boutis, T. C. (1984). Remerging Feigenbaum trees in dynamical systems. Physics Letters A,104, 239–244.

    MathSciNet  Google Scholar 

  55. Kyprianidis, I. M., Stouboulos, I. N., & Haralabidis, P. (2000). Antimonotonicity and chaotic dynamics in a fourth-order autonomous nonlinear electric circuit. International Journal of Bifurcation and Chaos,10, 1903–1911.

    Google Scholar 

  56. Kaya, T. (2019). A true random number generator based on a Chua and RO-PUF: design, implementation and statistical analysis. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-019-01474-2.

    Article  Google Scholar 

  57. Tuncer, T. (2016). The implementation of chaos-based PUF designs in field programmable gate array. Nonlinear Dynamics,86, 975–986.

    Google Scholar 

  58. Sprott, J. C. (2011). A proposed standard for the publication of new chaotic systems. International Journal of Bifurcation and Chaos,21(09), 2391–2394.

    Google Scholar 

  59. Kom, G. H., Kengne, J., Mboupda Pone, J. R., Kenne, G., & Tiedeu, A. B. (2018). Asymmetric double strange attractors in a simple autonomous jerk circuit. Complexity, 2018, 4658785. https://doi.org/10.1155/2018/4658785.

    Article  Google Scholar 

  60. Signing, V. F., Kengne, J., & Mboupda Pone, J. R. (2019). Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Chaos, Solitons and Fractals,118, 187–198.

    MathSciNet  Google Scholar 

  61. Kingni, S. T., Mboupda Pone, J. R., Kuiate, G. F., & Pham, V. T. (2019). Coexistence of attractors in integer-and fractional-order three-dimensional autonomous systems with hyperbolic sine nonlinearity: Analysis, circuit design and combination synchronisation. Pramana,93(1), 12.

    Google Scholar 

  62. Joshi, M., & Ranjan, A. (2019). An autonomous chaotic and hyperchaotic oscillator using OTRA. In Analog integrated circuits and signal processing (pp. 1–13).

  63. Tamaševičius, A., Bumelienė, S., Kirvaitis, R., Mykolaitis, G., Tamaševičiūtė, E., & Lindberg, E. (2009). Autonomous Duffing–Holmes type chaotic oscillator. Elektronika ir Elektrotechnika,5(93), 43–46.

    MATH  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mr. Marc Esperance Songolo (Department of Mathematics and Computer Science, University of Lubumbashi, Lubumbashi, R.D. Congo) for interesting discussions on mathematical analysis and carefully reading the manuscript and Dr. Gaby Tchimmoue (College of Technology, University of Buea, Cameroon) for providing data on ECG signals.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Roger Mboupda Pone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mboupda Pone, J.R., Çiçek, S., Takougang Kingni, S. et al. Passive–active integrators chaotic oscillator with anti-parallel diodes: analysis and its chaos-based encryption application to protect electrocardiogram signals. Analog Integr Circ Sig Process 103, 1–15 (2020). https://doi.org/10.1007/s10470-019-01557-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01557-0

Keywords

Navigation