Skip to main content
Log in

Carotenogenesis and chromoplast development during ripening of yellow, orange and red colored Physalis fruit

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Formation of specific ultrastructural chromoplastidal elements during ripening of fruits of three different colored Physalis spp. is closely related to their distinct carotenoid profiles.

Abstract

The accumulation of color-determining carotenoids within the chromoplasts of ripening yellow, orange, and red fruit of Physalis pubescens L., Physalis peruviana L., and Physalis alkekengi L., respectively, was monitored by high-performance liquid chromatography/diode array detector/tandem mass spectrometry (HPLC–DAD-MS/MS) as well as light and transmission electron microscopy. Both yellow and orange fruit gradually accumulated mainly β-carotene and lutein esters at variable levels, explaining their different colors at full ripeness. Upon commencing β-carotene biosynthesis, large crystals appeared in their chromoplasts, while large filaments protruding from plastoglobules were characteristic elements of chromoplasts of orange fruit. In contrast to yellow and orange fruit, fully ripe red fruit contained almost no β-carotene, but esters of both β-cryptoxanthin and zeaxanthin at very high levels. Tubule bundles and unusual disc-like crystallites were predominant carotenoid-bearing elements in red fruit. Our study supports the earlier hypothesis that the predominant carotenoid type might shape the ultrastructural carotenoid deposition form, which is considered important for color, stability and bioavailability of the contained carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RS:

Ripening stage

TSS:

Total soluble solids

TEM:

Transmission electron microscopy

References

  • Ariizumi T, Kishimoto S, Kakami R et al (2014) Identification of the carotenoid modifying gene PALE YELLOW PETAL 1 as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (Solanum lycopersicum). Plant J 79:453–465

    PubMed  CAS  Google Scholar 

  • Bernstein PS, Li B, Vachali PP et al (2016) Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 50:34–66

    PubMed  CAS  Google Scholar 

  • Berry HM, Rickett DV, Baxter CJ et al (2019) Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. J Exp Bot 70:2637–2650

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bravo K, Sepulveda-Ortega S, Lara-Guzman O et al (2015) Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). J Sci Food Agric 95:1562–1569

    PubMed  CAS  Google Scholar 

  • Breithaupt DE, Schwack W (2000) Determination of free and bound carotenoids in paprika (Capsicum annuum L.) by LC/MS. Eur Food Res Technol 211:52–55

    CAS  Google Scholar 

  • Breithaupt DE, Wirt U, Bamedi A (2002) Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry. J Agric Food Chem 50:66–70

    PubMed  CAS  Google Scholar 

  • Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Spectroscopy, vol 1B. Birkhäuser Verlag, Basel, Boston, Berlin, pp 13–62

    Google Scholar 

  • Chacón-Ordóñez T, Esquivel P, Jiménez VM et al (2016) Deposition form and bioaccessibility of keto-carotenoids from mamey sapote (Pouteria sapota), red bell pepper (Capsicum annuum), and sockeye salmon (Oncorhynchus nerka) filet. J Agric Food Chem 64:1989–1998

    PubMed  Google Scholar 

  • Chacón-Ordóñez T, Schweiggert RM, Bosy-Westphal A et al (2017) Carotenoids and carotenoid esters of orange- and yellow-fleshed mamey sapote (Pouteria sapota (Jacq.) H.E. Moore & Stearn) fruit and their post-prandial absorption in humans. Food Chem 221:673–682

    PubMed  Google Scholar 

  • Cooperstone JL, Ralston RA, Riedl KM et al (2015) Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Mol Nutr Food Res 59:658–669

    PubMed  PubMed Central  CAS  Google Scholar 

  • Deineka VI, Sorokopudov VN, Deineka LA et al (2008) Studies of Physalis alkekengi L. fruits as a source of xanthophylls. Pharm Chem J 42:87–88

    CAS  Google Scholar 

  • Delgado-Pelayo R, Gallardo-Guerrero L, Hornero-Méndez D (2014) Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res Int 65:272–281

    CAS  Google Scholar 

  • Delgado-Pelayo R, Gallardo-Guerrero L, Hornero-Ménndez D (2016) Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Food Chem 199:165–175

    PubMed  CAS  Google Scholar 

  • De Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from amazonian fruits. J Agric Food Chem 55:5062–5072

    PubMed  Google Scholar 

  • Deruère J, Römer S, D’Harlingue A et al (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133

    PubMed  PubMed Central  Google Scholar 

  • Dugo P, Herrero M, Kumm T et al (2008) Comprehensive normal-phase × reversed-phase liquid chromatography coupled to photodiode array and mass spectrometry detection for the analysis of free carotenoids and carotenoid esters from mandarin. J Chromatogr A 1189:196–206

    PubMed  CAS  Google Scholar 

  • Etzbach L, Pfeiffer A, Weber F, Schieber A (2018) Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC–DAD–APCI–MSn. Food Chem 245:508–517

    PubMed  CAS  Google Scholar 

  • Facundo HVDV, Gurak PD, Mercadante AZ et al (2015) Storage at low temperature differentially affects the colour and carotenoid composition of two cultivars of banana. Food Chem 170:102–109

    PubMed  CAS  Google Scholar 

  • Feng S, Jiang M, Shi Y et al (2016) Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study. Front Plant Sci 7:1047

    PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR et al (1994) Carotenoid biosynthesis during tomato fruit development. Plant Physiol 105:405–413

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fu X, Kong W, Peng G et al (2012) Plastid structure and carotenogenic gene expression in red-and white-fleshed loquat (Eriobotrya japonica) fruits. J Exp Bot 63:341–354

    PubMed  CAS  Google Scholar 

  • Grune T, Lietz G, Palou A et al (2285S) Beta-carotene is an important vitamin A source. J Nutr 140:2268S–2285S

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta P, Sreelakshmi Y, Sharma R (2015) A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods 11:5

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harris WM, Spurr AR (1969) Chromoplasts of tomato fruits. I. Ultrastructure of low-pigment and high-beta mutants. Carotene analyses. Am J Bot 56:369–379

    CAS  Google Scholar 

  • Hempel J, Amrehn E, Quesada S et al (2014) Lipid-dissolved γ-carotene, β-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits. Planta 240:1037–1050

    PubMed  CAS  Google Scholar 

  • Hempel J, Schädle CN, Leptihn S et al (2016) Structure related aggregation behavior of carotenoids and carotenoid esters. J Photochem Photobiol A Chem 317:161–174

    CAS  Google Scholar 

  • Hempel J, Schädle CN, Sprenger J et al (2017) Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem 218:525–533

    PubMed  CAS  Google Scholar 

  • Huang H, Lu C, Ma S et al (2019) Different colored Chrysanthemum × morifolium cultivars represent distinct plastid transformation and carotenoid deposit patterns. Protoplasma. https://doi.org/10.1007/s00709-019-01406-x

    Article  PubMed  Google Scholar 

  • Jeffery J, Holzenburg A, King S (2012) Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. J Sci Food Agric 92:2594–2602

    PubMed  CAS  Google Scholar 

  • Johnson EJ (2014) Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr Rev 72:605–612

    Google Scholar 

  • Kilcrease J, Rodriguez-Uribe L, Richins RD et al (2015) Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp. Plant Sci 232:57–66

    PubMed  CAS  Google Scholar 

  • Kim JE, Rensing KH, Douglas CJ, Cheng KM (2010) Chromoplasts ultrastructure and estimated carotene content in root secondary phloem of different carrot varieties. Planta 231:549–558

    PubMed  CAS  Google Scholar 

  • Knoth R, Hansmann P, Sitte P (1986) Chromoplasts of Palisota barteri, and the molecular structure of chromoplast tubules. Planta 168:167–174

    PubMed  CAS  Google Scholar 

  • Lado J, Zacarías L, Gurrea A et al (2015) Exploring the diversity in Citrus fruit colouration to decipher the relationship between plastid ultrastructure and carotenoid composition. Planta 242:645–661

    PubMed  CAS  Google Scholar 

  • Li L, Yuan H (2013) Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys 539:102–109

    PubMed  CAS  Google Scholar 

  • Ljubešić N (1977) The formation of chromoplasts in fruits of Cucurbita maxima Duch. ‘turbaniformis’. Bot Gaz 138:286–290

    Google Scholar 

  • Ljubešić N, Wrischer M, Prebeg T, Brkić D (2001) Carotenoid-bearing structures in fruit chromoplasts of Solanum capsicastrum Link. Acta Bot Croat 60:131–139

    Google Scholar 

  • Lu P, Wang S, Grierson D, Xu C (2019) Transcriptomic changes triggered by carotenoid biosynthesis inhibitors and role of Citrus sinensis phosphate transporter 4;2 (CsPHT4;2) in enhancing carotenoid accumulation. Planta 249:257–270

    PubMed  CAS  Google Scholar 

  • Melendez-Martinez AJ, Stinco CM, Liu C, Wang XD (2013) A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chem 138:1341–1350

    PubMed  CAS  Google Scholar 

  • Mercadante AZ, Rodrigues DB, Petry FC, Mariutti LRB (2017) Carotenoid esters in foods—a review and practical directions on analysis and occurrence. Food Res Int 99:830–850

    PubMed  CAS  Google Scholar 

  • Montefiori M, McGhie TK, Hallett IC, Costa G (2009) Changes in pigments and plastid ultrastructure during ripening of green-fleshed and yellow-fleshed kiwifruit. Sci Hortic (Amsterdam) 119:377–387

    CAS  Google Scholar 

  • Müller-Maatsch J, Sprenger J, Hempel J et al (2017) Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit. Food Res Int 99:928–935

    PubMed  Google Scholar 

  • Nisar N, Li L, Lu S et al (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82

    PubMed  CAS  Google Scholar 

  • Nogueira M, Mora L, Enfissi EMA et al (2013) Subchromoplast sequestration of carotenoids affects regulatory mechanisms in tomato lines expressing different carotenoid gene combinations. Plant Cell 25:4560–4579

    PubMed  PubMed Central  CAS  Google Scholar 

  • Olivares-Tenorio M-L, Dekker M, Verkerk R, van Boekel MAJS (2016) Health-promoting compounds in cape gooseberry (Physalis peruviana L.): review from a supply chain perspective. Trends Food Sci Technol 57:83–92

    CAS  Google Scholar 

  • Paolillo DJ, Garvin DF, Parthasarathy MV (2004) The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma 224:245–253

    PubMed  Google Scholar 

  • Petry FC, Mercadante AZ (2016) Composition by LC-MS/MS of new carotenoid esters in mango and citrus. J Agric Food Chem 64:8207–8224

    PubMed  CAS  Google Scholar 

  • Purcell AE, Walter WM, Thompkins WT (1969) Relationship of vegetable color to physical state of the carotenes. J Agric Food Chem 17:41–42

    CAS  Google Scholar 

  • Rivera SM, Christou P, Canela-Garayoa R (2014) Identification of carotenoids using mass spectrometry. Mass Spectrom Rev 33:353–372

    PubMed  CAS  Google Scholar 

  • Rodriguez-Amaya DB (2001) A guide to carotenoid analysis in foods. ILSI Press, Washington

    Google Scholar 

  • Rojas-Garbanzo C, Gleichenhagen M, Heller A et al (2017) Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guajava L. cv. ‘Criolla’) during fruit ripening. J Agric Food Chem 65:3737–3747

    PubMed  CAS  Google Scholar 

  • Schweiggert RM, Carle R (2017) Carotenoid deposition in plant and animal foods and its impact on bioavailability. Crit Rev Food Sci Nutr 57:1807–1830

    PubMed  CAS  Google Scholar 

  • Schweiggert RM, Steingass CB, Heller A et al (2011a) Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). Planta 234:1031–1044

    PubMed  CAS  Google Scholar 

  • Schweiggert RM, Steingass CB, Mora E et al (2011b) Carotenogenesis and physico-chemical characteristics during maturation of red fleshed papaya fruit (Carica papaya L.). Food Res Int 44:1373–1380

    CAS  Google Scholar 

  • Schweiggert RM, Vargas E, Conrad J et al (2016) Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.). Food Chem 200:274–282

    PubMed  CAS  Google Scholar 

  • Simpson DJ, Baqar MR, Lee TH (1977) Chromoplast ultrastructure of Capsicum carotenoid mutants I. Ultrastructure and carotenoid composition of a new mutant. Zeitschrift für Pflanzenphysiologie 83:293–308

    CAS  Google Scholar 

  • Simpson DJ, Baqar MR, Lee TH (1978) Chromoplast ultrastructure in fruit of Solanum pseudocapsicum and fruit and sepals of Physalis alkekengi. Aust J Bot 26:793–806

    Google Scholar 

  • Singh DB, Pal AA, Lal S et al (2012) Growth and development changes of cape gooseberry (Physalis peruviana L.) fruits. Asian J Hortic 7:374–378

    Google Scholar 

  • Sitte P, Falk H, Liedvogel B (1980) Chromoplasts. In: Czygan F (ed) Pigments in plants. Fisher, Stuttgart, pp 117–148

    Google Scholar 

  • Steffen K, Reck G (1964) Chromoplastenstudien III. Die chromoplastengenese und das problem der plastidenhullen bei Daucus carota. Planta 60:627–648

    Google Scholar 

  • Turcsi E, Nagy V, Deli J (2016) Study on the elution order of carotenoids on endcapped C18 and C30 reverse silica stationary phases. A review of the database. J Food Compos Anal 47:101–112

    CAS  Google Scholar 

  • Van Breemen RB, Dong L, Pajkovic ND (2012) Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom 312:163–172

    PubMed  PubMed Central  Google Scholar 

  • Vásquez-Caicedo AL, Heller A, Neidhart S, Carle R (2006) Chromoplast morphology and β-carotene accumulation during postharvest ripening of mango cv. “Tommy Atkins”. J Agric Food Chem 54:5769–5776

    PubMed  Google Scholar 

  • Weller P, Breithaupt DE (2003) Identification and quantification of zeaxanthin esters in plants using liquid chromatography-mass spectrometry. J Agric Food Chem 51:7044–7049

    PubMed  CAS  Google Scholar 

  • Wen X, Hempel J, Schweiggert RM et al (2017) Carotenoids and carotenoid esters of red and yellow Physalis (Physalis alkekengi L. and P. pubescens L.) fruits and calyces. J Agric Food Chem 65:6140–6151

    PubMed  CAS  Google Scholar 

  • Wen X, Erşan S, Li M et al (2019) Physicochemical characteristics and phytochemical profiles of yellow and red Physalis (Physalis alkekengi L. and P. pubescens L.) fruits cultivated in China. Food Res Int 120:389–398

    PubMed  CAS  Google Scholar 

  • Whitson M, Manos PS (2005) Untangling Physalis (Solanaceae) from the Physaloids: a two-gene phylogeny of the Physalinae. Syst Bot 30:216–230

    Google Scholar 

  • Zanatta CF, Mercadante AZ (2007) Carotenoid composition from the Brazilian tropical fruit camu-camu (Myrciaria dubia). Food Chem 101:1526–1532

    CAS  Google Scholar 

  • Ziegler JU, Wahl S, Würschum T et al (2015) Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 Triticum species grown at multiple sites. J Agric Food Chem 63:5061–5071

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms Johanna Ruhnau, master gardener, Botanical Garden, University of Hohenheim, for cultivation of Physalis plants and Ms Erika Rücker, Institute of Botany, University of Hohenheim, for technical assistance in TEM. This work was partially funded by China Postdoctoral Science Foundation (2019M650899). One of the authors (X.W.) gratefully acknowledges a scholarship from China Scholarship Council (CSC, Grant 201606350121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanying Ni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Heller, A., Wang, K. et al. Carotenogenesis and chromoplast development during ripening of yellow, orange and red colored Physalis fruit. Planta 251, 95 (2020). https://doi.org/10.1007/s00425-020-03383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03383-5

Keywords

Navigation