Skip to main content
Log in

Au and PGE Determination in Geochemical Materials: Experience in Applying Spectrometric Techniques

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

The paper systematizes methods used to determine trace concentrations (1n to 1000n ppb) of PGE and Au in geochemical materials. The methods involve various techniques of sample preparation for analysis and instrumental determination of elements. Each of the methods is briefly characterized, and the analytical possibilities of the application of the suggested approaches in solving various fundamental and applied geochemical problems are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

Notes

  1. The material of the iron–manganese crusts and nodules is highly moisture-retentive and, hence, was first dried to constant weight at 110°C for 48 h and then was stored in a dessicator.

  2. When samples with high sulfide concentrations were analyzed, these samples were preliminarily treated with reverse aqua regia (HNO3 + HCl = 3 : 1).

REFERENCES

  1. C. Agatemor and D. Beauchemin, “Matrix effects in inductively coupled plasma mass spectrometry: a review,” Anal. Chim. Acta. 706 (1), 66–83 (2011).

    Article  Google Scholar 

  2. A. M. Asavin, I. V. Kubrakova, O. A. Tyutyunnik, E. I. Chesalova, and M. E. Mel’nikov, “Geochemical zoning in ferromanganese crusts of Ita–MaiTai guyot,” Geochem. Int. 48 (5), 423–445 (2010).

    Article  Google Scholar 

  3. M. Balcerzak, “Methods for the determination of platinum group elements in environmental and biological materials: a review,” Crit. Rev. Anal. Chem. 41, 214–235 (2011).

    Article  Google Scholar 

  4. L. Bencs, K. Ravindra, and R. Van Grieken, “Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters,” Spectrochim. Acta. Part B. 58, 1723–1755 (2003).

    Article  Google Scholar 

  5. E. D. Berezhnaya and A. V. Dubinin, “Determination of the platinum–group elements and gold in ferromanganese nodule reference material NOD-A-1,” Geochem. Int. 55 (2), 218–224 (2017).

    Article  Google Scholar 

  6. K. Boch, M. Schuster, G. Risse, and M. Schwarzer, “Microwave–assisted digestion procedure for the determination of palladium in road dust,” Anal. Chim. Acta 459 (2), 257–265 (2002).

    Article  Google Scholar 

  7. O. C. Bosch, S. Rojas, J. M. Cano Pavon, and A. Garsia de Torres, “Automated on–line separation–preconcentration system for platinum determination by electrothermal atomic absorption spectrometry,” Anal. Chim. Acta. 494 (1–2), 97–103 (2003).

    Article  Google Scholar 

  8. C. M. Brauns, “A rapid, low–blank technique for the extraction of osmium from geological samples,” Chem. Geol. 176, 379–384 (2001).

    Article  Google Scholar 

  9. G. L. Bukhbinder, T. M. Korda, M. G. Demidova, E. A. Gus’kova, and V. G. Torgov, “Determination of platinum-group metals and gold in the group extract by inductively coupled plasma atomic emission spectrometry after the autoclave decomposition of geological samples,” J. Analyt. Chem. 64 (6), 593–601 (2009).

    Article  Google Scholar 

  10. Z. Chu, Y. Yan, Z. Chen, J. Guo, Y. Yang, C. Li, and Y. Zhang, “A comprehensive method for precise determination of Re, Os, Ir, Ru, Pt, Pd concentrations and Os isotopic compositions in geological samples,” Geostand. Geoanalyt. Res. 39(2), 151–169 (2015).

    Article  Google Scholar 

  11. M. D’Orazio and L. Folco, “Chemical analysis of iron meteorites by inductively coupled plasma–mass spectrometry,” Geostand. Geoanalyt. Res. 27(3), 215–225 (2003).

    Article  Google Scholar 

  12. A. S. Dubenskiy, I. F. Seregina, Z. K. Blinnikova, M. P. Tsyurupa, L. A. Pavlova, V. A. Davankov, and M. A. Bolshov, “Investigation of the new sorption preconcentration systems for determination of noble metals in rocks by inductively coupled plasma–mass spectrometry,” Talanta 153, 240–246 (2016).

    Article  Google Scholar 

  13. A. Dubiella–Jackowska, B. Kudłak, Ż. Polkowska, and J. Namieśnik, “Environmental fate of traffic–derived platinum group metals,” Crit. Rev. Anal. Chem. 39, 251–271 (2009).

    Article  Google Scholar 

  14. C. J. Ely, C. R. Neal, J. A. O’Neill Jr., and J. C. Jain “Quantifying of platinum group elements (PGEs) and gold in geological samples using cation exchange pretreatment and ultrasonic nebulization inductively coupled plasma–mass spectrometry (UNS–ICP–MS),” Chem. Geol. 157, 219–234 (1999).

    Article  Google Scholar 

  15. E. M. Galimov, V. P. Kolotov, M. A. Nazarov, Yu. A. Kostitsyn, I. V. Kubrakova, N. N. Kononkova, I. A. Roshchina, V. A. Alexeev, L. L. Kashkarov, D. D. Badyukov, and V. S. Sevast’yanov, “Analytical results for the material of the Chelyabinsk meteorite,” Geochem. Int. 51 (7), 522–539 (2013).

    Article  Google Scholar 

  16. M. M. Gonzalez Garcia, F. Sanchez Rojas, C. Bosch Ojeda, A. Garcia de Torres, and J. M. Cano Pavon, “On-line ion-exchange preconcentration and determination of traces of platinum by electrothermal atomic absorption spectrometry,” Anal. Bioanal. Chem. V. 375(8), 1229–1233 (2003).

    Article  Google Scholar 

  17. S. Hann, G. Koellensperger, K. Kanitsar, and G. Stingeder, “ICP–SFMS determination using IDMS in combination with on-line and off-line matrix separation,” J. Anal. At. Spectrom. 16. (9), 1057–1063 (2001).

    Article  Google Scholar 

  18. U. Herpers, W. Herr, and R. Wölfle, “Evaluation of 53Mn by (n, γ) activation, 26Al and special trace elements in meteorites by γ-coincidence techniques,” Meteorit Res. Proc. of a Symposium on Meteorite Research Held< Vienna, Austria, 1968 (Vienna, 1969), pp. 337–396 (1969). http://www.geoanalyst.org/wp–content/uploads/2017/ 10/GeoPT20Report.pdf http://www.geoanalyst.org/ wp–content/uploads/2017/10/GeoPT23FullReport.pdf

  19. ICP Mass Spectrometry Handbook, Ed. by S. M. Nelms (CRC Press, 2005).

    Google Scholar 

  20. I. Jarvis, M. M. Totland, and K. E. Jarvis, “Determination of the platinum–group elements in geological materials by ICP–MS using microwave digestion, alkali fusion and cation–exchange chromatography,” Chem. Geol. 143, 27–42 (1997).

    Article  Google Scholar 

  21. D. A. Katskov, “Introduction in multielement atomic absorption analysis,” Analit. Kontrol 22 (4), 350–442 (2018).

    Google Scholar 

  22. M. S. Kiseleva, O. A. Tyutyunnik, A. V. Nikulin, and I. V. Kubrakova, “Microwve preparation of natural objects using new technical approaches,” Zavodskaya Lab. Diagnost. Mineral., 80 (6), 7–11 (2014).

    Google Scholar 

  23. O. A. Korotkina, L. N. Kogarko, E. S. Bazilevskaya, and I. V. Kubrakova, “Geochemistry of Fe–Mn deposits of the Atlantic Ocean (Strakhov Basin, Elena Seamount, and Cape Verde quadrangle),” Geochem. Int. 48 (12), 1166–1176 (2010).

    Article  Google Scholar 

  24. O. A. Kozmenko, S. V. Palesskii, I. V. Nikolaeva, V. G. Tomas, and G. N. Anoshin, “Improvement of technique of chemical preparation of geological samples in the Carius tubes for determination of PGE and rhenium,” Analit. Kontrol 15(4), 378–385 (2011).

    Google Scholar 

  25. N. A. Krivolutskaya, B. I. Gongalsky, T. V. Shlychkova, I. V. Kubrakova, O. A. Tyutyunnik, V. Yu. Chikatueva, N. N. Kononkova, Ya. V. Bychkova, E. V. Kovalchuk, and A. I. Yakushev, “Geology of the western flanks of the Oktyabr’skoe Deposit, Norilsk District, Russia: evidence of close magmatic system,” Mineral. Deposita 54 (4), 611–630 (2018).

    Article  Google Scholar 

  26. N. Krivolutskaya, N. Tolstykh, T. Kedrovskaya, K. Naumov, I. Kubrakova, O. Tyutyunnik, B. Gongalsky, E. Kovalchuk, L. Magazina, and Ya. Bychkova, “World–class PGE–Cu–Ni Talnakh deposit: new data on the structure and unique mineralization of the southern branch,” Minerals 8 (4), 124 (2018).

    Article  Google Scholar 

  27. I. V. Kubrakova, “Microwave–assisted sample preparation and ETAAS,” Spectrochim. Acta. 52B (8–9), 1469–1481 (1997).

    Article  Google Scholar 

  28. I. V. Kubrakova and E. S. Toropchenova, “Microwave sample preparation for geochemical and ecological studies,” J. Analyt. Chem. 68 (6), 467–476 (2013).

    Article  Google Scholar 

  29. I. V. Kubrakova, A. V. Nikulin, I. Ya. Koshcheeva, and O. A. Tyutyunnik, “Platinum metals in the environment: content, determination, and behavior in natural systems,“ Khim. Ust. Razvitiya, no. 6, 645–656 (2012).

  30. I. V. Kubrakova, O. A. Tyutyunnik, I. Y. Koshcheeva, S. N. Nabiullina, and A. Y. Sadagov, “Migration behavior of platinum group elements in natural and technogeneous systems,” Geochem. Int. 55 (1), 108–124 (2017).

    Article  Google Scholar 

  31. B. A. Lesniewska, B. Godlewska-Zyskiewicz, B. Bocca, S. Caimi, and A. Hulanicki, “Platinum, palladium and rhodium content in road dust, tunnel dust and common grass in Bialystok area (Poland): a pilot study,” Sci. Total Environ. 321, 93–104 (2004).

    Article  Google Scholar 

  32. J. S. Lewis, “Satellites of the outer planets: their physical and chemical nature,” Icarus 15 (2), 174–185 (1971).

    Article  Google Scholar 

  33. T. Meisel and J. Moser, “Platinum–group element and rhenium concentrations in low abundance reference materials,” Geostand. Geoanalytical Res. 28, 233–250 (2004).

    Article  Google Scholar 

  34. V. I. Men’shikova, V. N. Vlasova, V. I. Lozhkin, and Yu. V. Sakol’nikova, “ICP-MS PGE determination in rocks using external calibration after separation of matrix elements on cationite KU–2–8,” Analit. Kontrol, 20 (3), 190–201 (2016).

    Google Scholar 

  35. O. B. Mokhodoeva, G. V. Myasoedova, and I. V. Kubrakova, “Sorption preconcentration in combined methods for the determination of noble metals,” J. Analyt. Chem.62 (7), 607–622 (2007).

    Article  Google Scholar 

  36. O. B. Mokhodoeva, G. V. Myasoedova, I. V. Kubrakova, A. V. Nikulin, O. I. Artyushin, and I. L. Odinets, “New solid extractants for preconcentrating noble metals,” J. Analyt. Chem. 65 (1), 12–16 (2010).

    Article  Google Scholar 

  37. O. B. Mokhodoeva, A. V. Nikulin, G. V. Myasoedova, and I. V. Kubrakova, “A new combined ETAAS method for the determination of platinum, palladium, and gold traces in natural samples,” J. Analyt. Chem. 67 (6), 531–536 (2012).

    Article  Google Scholar 

  38. G. V. Myasoedova and I. I. Antokol’skaya, “POLIORGS complexing sorbents for preconcentration of noble metals,” Zh. Analit. Khim. 46 (6), 1068–1075 (1991).

    Google Scholar 

  39. G. V. Myasoedova, O. B. Mokhodoeva, and I. V. Kubrakova, “Recent advances in the noble metal determination using the sorption preconcentration,” Analyt. Sci. 23 (9), 1031–1039 (2007).

    Article  Google Scholar 

  40. M. Niemelä, S. V. Huttunen, S. S. Gornostayev, and P. Perämäki, “Determination of Pt from coke samples by ICP–MS after microwave assisted digestion and microwave assisted cloud point extraction,” Microchim. Acta. 166, 255–260 (2009).

    Article  Google Scholar 

  41. I. V. Nikolaeva, S. V. Palesskym O. A. Kuzmenko, and G. N. Anoshin, “Inductively coupled plasma mass-spectrometric determination of trace elements in the geological objects,” Chemical Analysis in the Geology and Geochemistry, Ed. by G. N. Anoshin (GEO., Novosibirsk, 2016), pp. 276–297 [in Russian].

    Google Scholar 

  42. S. V. Palesskii, I. V. Nikolaeva, O. A. Koz’menko, and G. N. Anoshin, “Determination of platinum-group elements and rhenium in standard geological samples by isotope dilution with mass-spectrometric ending,” J. Analyt. Chem. 64 (3), 272–276 (2009).

    Article  Google Scholar 

  43. D. G. Pearson and S. J. Woodland, “Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re–Os isotopes in geological samples by isotope dilution ICP–MS,” Chem. Geol. 165, 87–107 (2000).

    Article  Google Scholar 

  44. B. J. Perry, R. R. Barefoot, and J. C. Van Loon, “Inductively coupled plasma mass spectrometry for the determination of platinum group elements and gold,” Trends Anal. Chem. 14 (8), 388–397 (1995).

    Google Scholar 

  45. M. I. Petaev and S. B. Yacobsen, “Differentiation of metal–rich meteoritic parent bodies: I. Measurements of PGEs, Re, Mo, W, and Au in meteoritic Fe–Ni metal,” Meteorit. Planet. Sci. 39 (10), 1685–1697 (2004).

    Article  Google Scholar 

  46. P. Petrova, S. Velichkov, N. Velitchkova, I. Havezov, and N. Daskalova, “Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition,” Spectrochim. Acta B 65, 130–136 (2010).

    Article  Google Scholar 

  47. W. Pretorius, D. Chipley, K. Kyser, and H. Heimstaedt, “Direct determination of trace levels of Os, Ir, Ru, Pt and Re in kimberlite and other geological materials using HR-ICP-MS,” J. Anal. At. Spectrom. 18 (4), 302–309 (2003).

    Article  Google Scholar 

  48. L. Qi, M. Zhou, and C. Y. Wang, “Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS,” J. Anal. At. Spectrom. 19 (10) 1335–1339 (2004).

    Article  Google Scholar 

  49. L. Qi and M. Zhou, “Determination of platinum-group elements in OPY-1: comparison of results using different digestion techniques,” Geostand. Geoanalyt. Res. 32 (3), 377–387 (2008).

    Article  Google Scholar 

  50. L. Qi, J. Gao, X. Huang, J. Hu, M.-Fu Zhou, and H. Zhong, “An improved digestion technique for determination of platinum group elements in geological samples,” J. Anal. At. Spectrom. 26, 1900–1904 (2011).

    Article  Google Scholar 

  51. C. R. M. Rao and G. S. Reddi, Platinum group metals (PGM); occurrence, use and recent trends in their determination,” Trends Anal. Chem. 19 (9), 565–585 (2000).

    Article  Google Scholar 

  52. K. L. Rasmussen, D. J. Malvin, F. Vagn, V. F. Buchwald, and J. T. Wasson, “Compositional trends and cooling rates of group IVB iron meteorites,” Geochim. Cosmochim. Acta 48, 805–813 (1984).

    Article  Google Scholar 

  53. K. Ravindra, L. Bencs, and R. Van Grieken, “Platinum group elements in the environment and their health risk,” Sci. Total Environ. 318, 1–43 (2004).

    Article  Google Scholar 

  54. R. Schaudy, J. T. Wasson, and V. F. Buchwald, “The chemical classification of iron meteorites. VI. A Reinvestigation of irons with Ge concentrations lower than 1 ppm,” Icarus 17, 174–192 (1972).

    Article  Google Scholar 

  55. E. R. D. Scott, “Primary fractionation of elements among iron meteorites,” Geochim. Cosmochim. Acta 42, 1447–1458 (1978).

    Article  Google Scholar 

  56. S. A. Silantyev, I. V. Kubrakova, and O. A. Tyutyunnik, “Distribution of siderophile and chalcophile elements in serpentinites of the oceanic lithosphere as an insight into the magmatic and crustal evolution of mantle peridotites,” Geochem. Int. 54 (12), 1019–1034 (2016).

    Article  Google Scholar 

  57. S. A. Silantyev, I. V. Kubrakova, M. V. Portnyagin, O. A. Tyutyunnik, A. V. Zhilkina, A. S. Gryaznova, K. Hoernle and R. Werner, “Ultramafic–mafic assemblage of plutonic rocks and hornblende schists of Shirshov Rise, Bering Sea, and Stalemate Ridge, Northwest Pacific: geodynamic interpretations of geochemical data,” Petrology 26 (5), 492–514 (2018).

    Article  Google Scholar 

  58. K. Simitchiev, V. Stefanova, V. Kmetov, G. Andreev, A. Sanchez, and A. Canals, “Platinum group elements in the environment and their health risk,” Talanta 77(2), 889–896 (2008).

    Article  Google Scholar 

  59. B. Ya. Spivakov, G. I. Malofeeva, and O. M. Petrukhin, “Solid-phase extraction on alkyl–bonded silica gels in inorganic analysis,” Anal. Sci. 22, 503–519 (2006).

    Article  Google Scholar 

  60. O. A. Tyutyunnik, I. Ya. Koshcheeva, V. A. Orlova, T. V. Shumskaya, and S. A. Gorbacheva, “Determination of osmium traces in natural samples,” J. Analyt. Chem. 59 (9), 885–889 (2004).

    Article  Google Scholar 

  61. J. T. Wasson, “The chemical classification of iron meteorites–III. Hexahendrites and other irons with germanium concentrations between 80 and 200 ppm,” Geochim. Cosmochim. Acta 33, 859–876 (1969).

    Article  Google Scholar 

  62. P. C. Webb, M. Thompson, P. J. Potts, and M. Burnham, “GeoPT20 – an international proficiency test for analytical geochemistry laboratories – report on round 20 (ultramafic rock, OPY–1),” GeoPT20 report (2007).

  63. P. C. Webb, M. Thompson, P. J. Potts, J. S. Watson, and C. Kriete, “GeoPT23—An international proficiency test for analytical geochemistry laboratories—report on round 23 (Separation Lake pegmatite, OU-9) and 23A (Manganese nodule, FeMn-1),” (2008).

  64. A. A. Yavnel, “Chemical composition of Sikhote Alin meteorite,” Akad. Nauk SSSR. Meteoritika 34, 21–26 (1975).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. S.A. Silantyev and Dr. O.N. Grebneva-Balyuk for useful consultations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kubrakova.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubrakova, I.V., Nabiullina, S.N. & Tyutyunnik, O.A. Au and PGE Determination in Geochemical Materials: Experience in Applying Spectrometric Techniques. Geochem. Int. 58, 377–390 (2020). https://doi.org/10.1134/S0016702920040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920040059

Keywords:

Navigation