Skip to main content
Log in

New multipliers of the barotropic vorticity equations

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

The barotropic vorticity equation is a classical model in atmospheric sciences. In this paper, we study the symmetry invariance properties of multipliers (integrating factors) admitted by this equation. The results are classified according to the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth’s angular rotation. A plethora of conservation laws can be obtained by studying the interaction between Lie point symmetry generators and multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bihlo, A., Popovych, R.O.: Symmetry analysis of barotropic potential vorticity equation. Commun. Theor. Phys. 52(4), 697–700 (2009)

    MATH  Google Scholar 

  2. Charney, J.G., DeVore, J.G.: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36(7), 12051216 (1979)

    Google Scholar 

  3. Charney, J.G., Fjørtoft, R., von Neumann, J.: Numerical integration of the barotropic vorticity equation. Tellus 2(4), 237254 (1950)

    Google Scholar 

  4. Jamal, S.: Solutions of quasi-geostrophic turbulence in multi-layered configurations. Quaest. Math. 41(3), 409–421 (2018)

    MATH  Google Scholar 

  5. Olver, P.: Application of Lie Groups to Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  6. Anco, S.C.: Generalization of Noether’s theorem in modern form to non-variational partial differential equations. In: Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science. , Fields Institute Communications, vol. 79, pp. 119–182 (2017). arXiv:1605.08734 [mathph]

  7. Steudel, H.: Über die Zuordnung zwischen Invarianzeigenschaften und Erhaltungssätzen. Z. für Natur. 17, 129–132 (1962)

    Google Scholar 

  8. Bluman, G., Temuerchaolu, Anco S.C: New conservation laws obtained directly from symmetry action on known conservation laws. J. Math. Anal. Appl. 322, 233–250 (2006)

    MATH  Google Scholar 

  9. Kara, A.H., Mahomed, F.M.: Relationship between symmetries and conservation laws. Int. J. Theor. Phys. 39(1), 23–40 (2000)

    MATH  Google Scholar 

  10. Kara, A.H., Mahomed, F.M.: A basis of conservation laws for partial differential equations. J. Nonlinear Math. Phys. 9, 60–72 (2002)

    MATH  Google Scholar 

  11. Anco, S.C.: Symmetry properties of conservation laws. Int. J. Mod. Phys. B 30, 1640004 (2016)

    MATH  Google Scholar 

  12. Anco, S.C., Kara, A.H.: Symmetry-invariant conservation laws of partial differential equations. Eur. J. Appl. Math. 29(1), 78–117 (2018)

    MATH  Google Scholar 

  13. Anco, S.C., Bluman, G.: Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications. Eur. J. Appl. Math. 13, 545–585 (2002)

    MATH  Google Scholar 

  14. Bluman, G., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences Series, vol. 168. Springer, New York (2009)

    MATH  Google Scholar 

  15. Anco, S.C.: Conservation laws of scaling-invariant field equations. J. Phys. A: Math. Gen. 36, 8623–8638 (2003)

    MATH  Google Scholar 

  16. Euler, N., Euler, M.: On nonlocal symmetries and nonlocal conservation laws and nonlocal transformations of evolution equations: two linearisable hierarchies. J. Nonlinear Math. Phys. 16(4), 489–504 (2009)

    MATH  Google Scholar 

  17. Morris, R., Kara, A.H., Biswas, A.: Soliton solution and conservation laws of the Zakharov equation in plasmas with power law nonlinearity. Nonlinear Anal. Model. Control 18(2), 153–159 (2013)

    MATH  Google Scholar 

  18. Jamal, S., Kara, A.H., Bokhari, A.H., Zaman, F.D.: The symmetries and conservation laws of some Gordon-type equations in Milne space–time. Pramana J. Phys. 80(5), 739–755 (2013)

    Google Scholar 

  19. Jamal, S., Kara, A.H.: New higher-order conservation laws of some classes of wave and Gordon-type equations. Nonlinear Dyn. 67, 97–102 (2012)

    MATH  Google Scholar 

  20. Jamal, S., Kara, A.H.: Higher-order symmetries and conservation laws of multi-dimensional Gordon-type equations. Pramana J. Phys. 77(3), 1–14 (2011)

    Google Scholar 

  21. Jamal, S.: Solutions for ultra-broad beam propagation in a planar waveguide with Kerr-like nonlinearity. J. Nonlinear Opt. Phys. Mater. 27(3), 1850032 (2018)

    Google Scholar 

  22. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhauser, Basel (1992)

    MATH  Google Scholar 

  23. Newell, A.C.: The history of the soliton. J. Appl. Mech. 50, 1127–1137 (1983)

    MATH  Google Scholar 

  24. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    MATH  Google Scholar 

  25. Katkov, V.L.: A class of exact solutions of the equation for the forecast of the geopotential. Izv. Acad. Sci. USSR Atmos. Ocean Phys. 1, 630–631 (1965)

    Google Scholar 

  26. Andreev, V.K., Kaptsov, O.V., Pukhnachov, V.V., Rodionov, A.A.: Applications of Group-Theoretical Methods in Hydrodynamics. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  27. Blender, R., Névir, P.: Nonlinear wave and modon solutions on the \(\beta \)-plane generated by Lie-symmetries. Beitr. Phys. Atmosph. 64(3), 255–258 (1991)

    MATH  Google Scholar 

  28. Huang, F.: Similarity reductions of barotropic and quasi-geostrophic potential vorticity equation. Commun. Theor. Phys. 42(6), 903–908 (2004)

    MATH  Google Scholar 

  29. Tang, X., Shukla, P.K.: A note on similarity reductions of barotropic and quasi-geostrophic potential vorticity equation. Commun. Theor. Phys. 49(1), 229–230 (2008)

    MATH  Google Scholar 

  30. Ibragimov, N.H., Aksenov, A.V., Baikov, V.A., Chugunov, V.A., Gazizov, R.K., Meshkov, A.G.: CRC Handbook of Lie Group Analysis of Differential Equations. Applications in Engineering and Physical Sciences, vol. 2. CRC Press, Boca Raton (1995)

    Google Scholar 

  31. Cheviakov, A.F.: GeM software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176, 48–61 (2007)

    MATH  Google Scholar 

  32. Platzman, G.W.: The spectral form of the vorticity equation. J. Meteorol. 17(6), 635–644 (1960)

    Google Scholar 

  33. Bihlo, A., Popovych, R.O.: Lie symmetries and exact solutions of the barotropic vorticity equation. J. Math. Phys. 50(12), 123102 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sameerah Jamal.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Research Foundation of South Africa, Grant No. 99279.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, S. New multipliers of the barotropic vorticity equations. Anal.Math.Phys. 10, 21 (2020). https://doi.org/10.1007/s13324-020-00365-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00365-4

Keywords

Mathematics Subject Classification

Navigation