Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modulation of regulatory T cell function and stability by co-inhibitory receptors

Abstract

Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of differences in Treg cells found in autoimmunity and cancer.
Fig. 2: Intrinsic and extrinsic functions of Treg cell co-inhibitory receptors.

Similar content being viewed by others

References

  1. Shevach, E. M. & Thornton, A. M. tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 259, 88–102 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fujishima, M., Hirokawa, M., Fujishima, N. & Sawada, K. TCRαβ repertoire diversity of human naturally occurring CD4+CD25+ regulatory T cells. Immunol. Lett. 99, 193–197 (2005).

    CAS  PubMed  Google Scholar 

  3. LeGuern, C. & Germana, S. On the elusive TCR specificity of thymic regulatory T cells. Am. J. Transpl. 19, 15–20 (2019).

    CAS  Google Scholar 

  4. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, J., Tan, J., Martino, M. M. & Lui, K. O. Regulatory T-cells: potential regulator of tissue repair and regeneration. Front. Immunol. 9, 585 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701–1711 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  9. Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012). This study demonstrates the requirement of a specific epigenetic pattern for the development and maintenance of the Treg cell programme, independent of FOXP3.

    CAS  PubMed  Google Scholar 

  10. Dominguez-Villar, M. & Hafler, D. A. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665–673 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    CAS  PubMed  Google Scholar 

  13. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitz, A. & Dominguez-Villar, M. Molecular mechanisms underlying TH1-like Treg generation and function. Cell Mol. Life Sci. 74, 4059–4075 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Grant, C. R., Liberal, R., Mieli-Vergani, G., Vergani, D. & Longhi, M. S. Regulatory T-cells in autoimmune diseases: challenges, controversies and–yet–unanswered questions. Autoimmun. Rev. 14, 105–116 (2015).

    CAS  PubMed  Google Scholar 

  16. Miyara, M. et al. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun. Rev. 10, 744–755 (2011).

    CAS  PubMed  Google Scholar 

  17. Venken, K. et al. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J. Immunol. 180, 6411–6420 (2008).

    CAS  PubMed  Google Scholar 

  18. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferraro, A. et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes 60, 2903–2913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu, R. et al. Regulatory T cell plasticity and stability and autoimmune diseases. Clin. Rev. Allergy Immunol. 58, 52–70 (2020).

    CAS  PubMed  Google Scholar 

  21. Nie, H. et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 19, 322–328 (2013).

    CAS  PubMed  Google Scholar 

  22. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitz, A. et al. AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease. EMBO Rep. 17, 1169–1183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    CAS  PubMed  Google Scholar 

  26. Arterbery, A. S. et al. Production of proinflammatory cytokines by monocytes in liver-transplanted recipients with de novo autoimmune hepatitis is enhanced and induces TH1-like regulatory T cells. J. Immunol. 196, 4040–4051 (2016).

    CAS  PubMed  Google Scholar 

  27. Yamada, A. et al. Impaired expansion of regulatory T cells in a neonatal thymectomy-induced autoimmune mouse model. Am. J. Pathol. 185, 2886–2897 (2015).

    CAS  PubMed  Google Scholar 

  28. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ TH1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hernandez, A. L. et al. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J. Clin. Invest. 125, 4212–4222 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Sumida, T. et al. Activated β-catenin in Foxp3+ regulatory T cells links inflammatory environments to autoimmunity. Nat. Immunol. 19, 1391–1402 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kumar, P., Saini, S. & Prabhakar, B. S. Cancer immunotherapy with check point inhibitor can cause autoimmune adverse events due to loss of Treg homeostasis. Semin. Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.01.006 (2019).

    Article  PubMed  Google Scholar 

  32. Darrasse-Jeze, G. et al. Tumor emergence is sensed by self-specific CD44hi memory Tregs that create a dominant tolerogenic environment for tumors in mice. J. Clin. Invest. 119, 2648–2662 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sainz-Perez, A., Lim, A., Lemercier, B. & Leclerc, C. The T-cell receptor repertoire of tumor-infiltrating regulatory T lymphocytes is skewed toward public sequences. Cancer Res. 72, 3557–3569 (2012).

    CAS  PubMed  Google Scholar 

  35. Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69, 2000–2009 (2009).

    CAS  PubMed  Google Scholar 

  36. Miller, A. M. et al. CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J. Immunol. 177, 7398–7405 (2006).

    CAS  PubMed  Google Scholar 

  37. Mizukami, Y. et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int. J. Cancer 122, 2286–2293 (2008).

    CAS  PubMed  Google Scholar 

  38. Ye, J. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes. Dev. 29, 2331–2336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, N. et al. Metabolic adaptation of human CD4+ and CD8+ T-cells to T-cell receptor-mediated stimulation. Front. Immunol. 8, 1516 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  41. Pacella, I. et al. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc. Natl Acad. Sci. USA 115, E6546–E6555 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sugiura, A. & Rathmell, J. C. Metabolic barriers to T cell function in tumors. J. Immunol. 200, 400–407 (2018).

    CAS  PubMed  Google Scholar 

  43. Bauer, C. A. et al. Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. J. Clin. Invest. 124, 2425–2440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood 122, 2823–2836 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Crellin, N. K., Garcia, R. V. & Levings, M. K. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109, 2014–2022 (2007).

    CAS  PubMed  Google Scholar 

  48. Pompura, S. L. & Dominguez-Villar, M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function. J. Leukoc. Biol. 103, 1065–1076 (2018).

    CAS  Google Scholar 

  49. Soond, D. R., Slack, E. C., Garden, O. A., Patton, D. T. & Okkenhaug, K. Does the PI3K pathway promote or antagonize regulatory T cell development and function? Front. Immunol. 3, 244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chuang, E. et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13, 313–322 (2000).

    CAS  PubMed  Google Scholar 

  51. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  52. Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Klocke, K., Sakaguchi, S., Holmdahl, R. & Wing, K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc. Natl Acad. Sci. USA 113, E2383–E2392 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Paterson, A. M. et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J. Exp. Med. 212, 1603–1621 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hou, T. Z. et al. A transendocytosis model of CTLA-4 function predicts its suppressive behavior on regulatory T cells. J. Immunol. 194, 2148–2159 (2015).

    CAS  PubMed  Google Scholar 

  56. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011). This work describes, for the first time, the capacity of Treg cell-expressed CTLA4 to remove CD80 and CD86 from the surface of APCs as a mechanism of suppression.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ovcinnikovs, V. et al. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol. 4, eaaw0902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, Z. S., Manser, E., Loo, T. H. & Lim, L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell Biol. 20, 6354–6363 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pedros, C., Canonigo-Balancio, A. J., Kong, K. F. & Altman, A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight 2, e95692 (2017). This study shows how PKCη signalling downstream of CTLA4 is essential for Treg cell function in the tumour but dispensable in colitis prevention.

    PubMed Central  Google Scholar 

  60. Kong, K. F. et al. Protein kinase C-η controls CTLA-4-mediated regulatory T cell function. Nat. Immunol. 15, 465–472 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sage, P. T., Paterson, A. M., Lovitch, S. B. & Sharpe, A. H. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41, 1026–1039 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ouyang, W. et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491, 554–559 (2012). This study demonstrates the function of FOXO1 in maintaining Treg cell stability and inhibiting the acquisition of a TH1 cell-like phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, C. T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).

    CAS  PubMed  Google Scholar 

  64. Magnuson, A. M. et al. Identification and validation of a tumor-infiltrating Treg transcriptional signature conserved across species and tumor types. Proc. Natl Acad. Sci. USA 115, E10672–E10681 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Liang, B. et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180, 5916–5926 (2008).

    CAS  PubMed  Google Scholar 

  66. Wang, J. et al. Fibrinogen-like protein 1 is a major immune inhibitory Ligand of LAG-3. Cell 176, 334–347.e12 (2019).

    CAS  PubMed  Google Scholar 

  67. Zhang, Q. et al. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. Sci. Immunol. 2, eaah4569 (2017). This study shows how LAG3 deficiency confers a population-level advantage to Treg cells by promoting their proliferation in the tissue.

    PubMed  PubMed Central  Google Scholar 

  68. Pan, F. et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325, 1142–1146 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sharma, M. D. et al. An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor EOS. Immunity 38, 998–1012 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Camisaschi, C. et al. LAG-3 expression defines a subset of CD4+CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. J. Immunol. 184, 6545–6551 (2010).

    CAS  PubMed  Google Scholar 

  71. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wainwright, D. A., Sengupta, S., Han, Y. & Lesniak, M. S. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro Oncol. 13, 1308–1323 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504 e497 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sage, P. T., Francisco, L. M., Carman, C. V. & Sharpe, A. H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2013).

    CAS  PubMed  Google Scholar 

  76. Zhang, B., Chikuma, S., Hori, S., Fagarasan, S. & Honjo, T. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model. Proc. Natl Acad. Sci. USA 113, 8490–8495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lowther, D. E. et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 1, e85935 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Delgoffe, G. M. et al. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501, 252–256 (2013). This work demonstrates the role of NRP1 in maintaining mouse Treg cell stability and preventing the acquisition of a TH1 cell-like phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Overacre-Delgoffe, A. E. et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141 (2017). This study shows how Treg cell secretion of IFNγ and signalling in the tumour microenvironment results in their functional destabilization.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Overacre-Delgoffe, A. E. & Vignali, D. A. A. Treg fragility: a prerequisite for effective antitumor immunity? Cancer Immunol. Res. 6, 882–887 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Di Pilato, M. et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570, 112–116 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Bin Dhuban, K. et al. Coexpression of TIGIT and FCRL3 identifies Helios+ human memory regulatory T cells. J. Immunol. 194, 3687–3696 (2015).

    Google Scholar 

  83. Fuhrman, C. A. et al. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J. Immunol. 195, 145–155 (2015).

    CAS  PubMed  Google Scholar 

  84. Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).

    CAS  PubMed  Google Scholar 

  85. Yamashita-Kanemaru, Y. et al. CD155 (PVR/Necl5) mediates a costimulatory signal in CD4+ T cells and regulates allergic inflammation. J. Immunol. 194, 5644–5653 (2015).

    CAS  PubMed  Google Scholar 

  86. Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lucca, L. E. et al. TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight 4, e124427 (2019).

    PubMed Central  Google Scholar 

  88. Lozano, E., Dominguez-Villar, M., Kuchroo, V. & Hafler, D. A. The TIGIT/CD226 axis regulates human T cell function. J. Immunol. 188, 3869–3875 (2012).

    CAS  PubMed  Google Scholar 

  89. Kourepini, E. et al. TIGIT enhances antigen-specific Th2 recall responses and allergic disease. J. Immunol. 196, 3570–3580 (2016).

    CAS  PubMed  Google Scholar 

  90. Liu, S. et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 20, 456–464 (2013).

    CAS  PubMed  Google Scholar 

  91. Dixon, K. O. et al. Functional anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J. Immunol. 200, 3000–3007 (2018).

    CAS  PubMed  Google Scholar 

  92. Kurtulus, S. et al. TIGIT predominantly regulates the immune response via regulatory T cells. J. Clin. Invest. 125, 4053–4062 (2015).

    PubMed  PubMed Central  Google Scholar 

  93. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019). This study shows how a hyperprogressive response to therapeutic PD1 blockade can result from the expansion of PD1+ Treg cell populations.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Manes, T. D. & Pober, J. S. Identification of endothelial cell junctional proteins and lymphocyte receptors involved in transendothelial migration of human effector memory CD4+ T cells. J. Immunol. 186, 1763–1768 (2011).

    CAS  PubMed  Google Scholar 

  95. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    CAS  PubMed  Google Scholar 

  96. De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016). This study compares the transcriptional profiles of tumour-infiltrating Treg cells with normal tissue-resident and circulating Treg cells.

    PubMed  PubMed Central  Google Scholar 

  97. Roy, S. et al. Multifaceted role of neuropilins in the immune system: potential targets for immunotherapy. Front. Immunol. 8, 1228 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Yadav, M. et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209, 1713–1722 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Szurek, E. et al. Differences in expression level of helios and neuropilin-1 do not distinguish thymus-derived from extrathymically-induced CD4+Foxp3+ regulatory T cells. PLoS One 10, e0141161 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Sarris, M., Andersen, K. G., Randow, F., Mayr, L. & Betz, A. G. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28, 402–413 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Battaglia, A. et al. Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 123, 129–138 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Milpied, P. et al. Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol. 39, 1466–1471 (2009).

    CAS  PubMed  Google Scholar 

  103. Battaglia, A. et al. Metastatic tumour cells favour the generation of a tolerogenic milieu in tumour draining lymph node in patients with early cervical cancer. Cancer Immunol. Immunother. 58, 1363–1373 (2009).

    PubMed  Google Scholar 

  104. Chaudhary, B. & Elkord, E. Novel expression of Neuropilin 1 on human tumor-infiltrating lymphocytes in colorectal cancer liver metastases. Expert. Opin. Ther. Targets 19, 147–161 (2015).

    CAS  PubMed  Google Scholar 

  105. Leclerc, M. et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat. Commun. 10, 3345 (2019).

    PubMed  PubMed Central  Google Scholar 

  106. Sabag, A. D. et al. Altered expression of regulatory molecules in the skin of psoriasis. Immunol. Res. 66, 649–654 (2018).

    CAS  PubMed  Google Scholar 

  107. Hansen, W. et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J. Exp. Med. 209, 2001–2016 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kikutani, H. & Kumanogoh, A. Semaphorins in interactions between T cells and antigen-presenting cells. Nat. Rev. Immunol. 3, 159–167 (2003).

    CAS  PubMed  Google Scholar 

  109. Solomon, B. D., Mueller, C., Chae, W. J., Alabanza, L. M. & Bynoe, M. S. Neuropilin-1 attenuates autoreactivity in experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 2040–2045 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541 (2002).

    CAS  PubMed  Google Scholar 

  111. Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020).

    CAS  PubMed  Google Scholar 

  112. Clayton, K. L. et al. T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases. J. Immunol. 192, 782–791 (2014).

    CAS  PubMed  Google Scholar 

  113. Rangachari, M. et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat. Med. 18, 1394–1400 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    CAS  PubMed  Google Scholar 

  115. Huang, Y. H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2015).

    CAS  PubMed  Google Scholar 

  116. DeKruyff, R. H. et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J. Immunol. 184, 1918–1930 (2010).

    CAS  PubMed  Google Scholar 

  117. Gautron, A. S., Dominguez-Villar, M., de Marcken, M. & Hafler, D. A. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur. J. Immunol. 44, 2703–2711 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sakuishi, K. et al. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncoimmunology 2, e23849 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Gao, X. et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One 7, e30676 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yan, J. et al. Tim-3 expression defines regulatory T cells in human tumors. PLoS One 8, e58006 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ma, Q. et al. Co-expression of LAG3 and TIM3 identifies a potent Treg population that suppresses macrophage functions in colorectal cancer patients. Clin. Exp. Pharmacol. Physiol. 45, 1002–1009 (2018).

    CAS  PubMed  Google Scholar 

  122. Bu, M. et al. Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8+ T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumour Biol. 37, 3949–3956 (2016).

    CAS  PubMed  Google Scholar 

  123. Sun, H. et al. Tim3+ Foxp3+ Treg cells are potent inhibitors of effector T cells and are suppressed in rheumatoid arthritis. Inflammation 40, 1342–1350 (2017).

    CAS  PubMed  Google Scholar 

  124. Li, S. et al. Downregulation of IL-10 secretion by Treg cells in osteoarthritis is associated with a reduction in Tim-3 expression. Biomed. Pharmacother. 79, 159–165 (2016).

    CAS  PubMed  Google Scholar 

  125. Hauser, S. L. et al. Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    CAS  PubMed  Google Scholar 

  126. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl Med. 7, 315ra189 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Romano, M., Fanelli, G., Albany, C. J., Giganti, G. & Lombardi, G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front. Immunol. 10, 43 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, Q. et al. Chimeric antigen receptor (CAR) Treg: a promising approach to inducing immunological tolerance. Front. Immunol. 9, 2359 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y. & Rudensky, A. Y. Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J. Exp. Med. 210, 2435–2466 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Jang, J. E. et al. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep. 20, 558–571 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kumar, P., Bhattacharya, P. & Prabhakar, B. S. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J. Autoimmun. 95, 77–99 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Andrews, L. P., Yano, H. & Vignali, D. A. A. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat. Immunol. 20, 1425–1434 (2019).

    CAS  PubMed  Google Scholar 

  133. Raikhelkar, J. & Uriel, N. Immune checkpoint inhibitor myocarditis. Curr. Opin. Cardiol. 34, 303–306 (2019).

    PubMed  Google Scholar 

  134. Garcia, C. R., Jayswal, R., Adams, V., Anthony, L. B. & Villano, J. L. Multiple sclerosis outcomes after cancer immunotherapy. Clin. Transl Oncol. 21, 1336–1342 (2019).

    PubMed  PubMed Central  Google Scholar 

  135. Cao, Y. et al. CNS demyelination and enhanced myelin-reactive responses after ipilimumab treatment. Neurology 86, 1553–1556 (2016).

    PubMed  PubMed Central  Google Scholar 

  136. Gerdes, L. A. et al. CTLA4 as immunological checkpoint in the development of multiple sclerosis. Ann. Neurol. 80, 294–300 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Bulliard, Y. et al. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013).

    CAS  PubMed  Google Scholar 

  139. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Arce Vargas, F. et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33, 649–663.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Pai, C. S. et al. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J. Clin. Invest. 129, 349–363 (2019).

    PubMed  Google Scholar 

  142. Ha, D. et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc. Natl Acad. Sci. USA 116, 609–618 (2019).

    CAS  PubMed  Google Scholar 

  143. Kavanagh, B. et al. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood 112, 1175–1183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers-response. Clin. Cancer Res. 25, 3469–3470 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Esfahani, K. et al. Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat. Commun. 10, 4712 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Fourcade, J. et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 3, e121157 (2018).

    PubMed Central  Google Scholar 

  147. Champiat, S. et al. Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nat. Rev. Clin. Oncol. 15, 748–762 (2018).

    CAS  PubMed  Google Scholar 

  148. Gambichler, T. et al. Decline of programmed death-1-positive circulating T regulatory cells predicts more favourable clinical outcome of patients with melanoma under immune checkpoint blockade. Br. J. Dermatol. https://doi.org/10.1111/bjd.18379 (2019).

    Article  PubMed  Google Scholar 

  149. Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol. 6, 280–286 (2005).

    CAS  PubMed  Google Scholar 

  150. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    CAS  PubMed  Google Scholar 

  151. Park, H. J. et al. PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells. J. Immunol. 194, 5801–5811 (2015).

    CAS  PubMed  Google Scholar 

  152. Sasidharan Nair, V. & Elkord, E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol. Cell Biol. 96, 21–33 (2018).

    CAS  PubMed  Google Scholar 

  153. Sun, B., Liu, M., Cui, M. & Li, T. Granzyme B-expressing Treg cells are enriched in colorectal cancer and present the potential to eliminate autologous T conventional cells. Immunol. Lett. 217, 7–14 (2020).

    CAS  PubMed  Google Scholar 

  154. Castela, E. et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 150, 748–751 (2014).

    CAS  PubMed  Google Scholar 

  155. Todd, J. A. et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin-2: a non-randomised, open label, adaptive dose-finding trial. PLoS Med. 13, e1002139 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Ward, N. C. et al. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J. Immunol. 201, 2579–2592 (2018).

    CAS  PubMed  Google Scholar 

  157. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Dimeloe, S. et al. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur. J. Immunol. 44, 3614–3620 (2014).

    CAS  PubMed  Google Scholar 

  159. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    CAS  PubMed  Google Scholar 

  160. Motoyoshi, Y. et al. Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol. Rep. 16, 141–146 (2006).

    CAS  PubMed  Google Scholar 

  161. Wei, M. et al. Diphtheria toxin-based recombinant murine IL-2 fusion toxin for depleting murine regulatory T cells in vivo. Protein Eng. Des. Sel. 27, 289–295 (2014).

    CAS  PubMed  Google Scholar 

  162. Sato, K. et al. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci. Transl Med. 8, 352ra110 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. Sugiyama, D. et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc. Natl Acad. Sci. USA 110, 17945–17950 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Ureshino, H. et al. Effector regulatory T cells reflect the equilibrium between antitumor immunity and autoimmunity in adult T-cell leukemia. Cancer Immunol. Res. 4, 644–649 (2016).

    CAS  PubMed  Google Scholar 

  165. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Newton, A. C. & Trotman, L. C. Turning off AKT: PHLPP as a drug target. Annu. Rev. Pharmacol. Toxicol. 54, 537–558 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Patterson, S. J. et al. Cutting edge: PHLPP regulates the development, function, and molecular signaling pathways of regulatory T cells. J. Immunol. 186, 5533–5537 (2011).

    CAS  PubMed  Google Scholar 

  168. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Luo, C. T., Liao, W., Dadi, S., Toure, A. & Li, M. O. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 529, 532–536 (2016). This study highlights the different requirements for FOXO1 activity of resting and activated Treg cells, indicating that migration to the inflamed tissue requires some degree of FOXO1 inactivation.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Passerini, L. et al. Treatment with rapamycin can restore regulatory T-cell function in IPEX patients. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2019.11.043 (2019).

    Article  PubMed  Google Scholar 

  172. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    CAS  PubMed  Google Scholar 

  173. Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J. Exp. Med. 196, 851–857 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    CAS  PubMed  Google Scholar 

  175. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Fan, M. Y. et al. Differential roles of IL-2 signaling in developing versus mature Tregs. Cell Rep. 25, 1204–1213 e1204 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Abbas, A. K., Trotta, E., R Simeonov, D., Marson, A. & Bluestone, J. A. Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3, eaat1482 (2018).

    PubMed  Google Scholar 

  178. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    CAS  PubMed  Google Scholar 

  179. Liau, N. P. D. et al. The molecular basis of JAK/STAT inhibition by SOCS1. Nat. Commun. 9, 1558 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. Caudy, A. A., Reddy, S. T., Chatila, T., Atkinson, J. P. & Verbsky, J. W. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119, 482–487 (2007).

    CAS  PubMed  Google Scholar 

  181. Cohen, A. C. et al. Cutting edge: decreased accumulation and regulatory function of CD4+CD25high T cells in human STAT5b deficiency. J. Immunol. 177, 2770–2774 (2006).

    CAS  PubMed  Google Scholar 

  182. Goudy, K. et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clin. Immunol. 146, 248–261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Sharfe, N., Dadi, H. K., Shahar, M. & Roifman, C. M. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc. Natl Acad. Sci. USA 94, 3168–3171 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Sledzinska, A. et al. Regulatory T cells restrain interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity 52, 151–166.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    CAS  PubMed  Google Scholar 

  186. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Margarita Dominguez-Villar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Co-inhibitory receptors

A family of surface receptors that attenuate and tune activation signals. Triggering of these receptors can result in heightened thresholds for T cell activation, shaping of effector responses and resolution of inflammation. Their expression is well characterized in T cells but not exclusive to immune populations.

Neuropilin 1

(NRP1). One of two members (NRP1 and NRP2) of a receptor family originally identified as class III semaphorin co-receptors in the nervous system, and further shown to be expressed in other cell types, including endothelial cells and tumour cells, as a receptor for vascular endothelial growth factors and other growth factors.

Pre-autoimmune disease

Preclinical systemic syndrome characterized by signs and symptoms that do not meet the diagnostic criteria of canonical autoimmune diseases but include the presence of autoantibodies.

Type 1 cytokines

Pro-inflammatory cytokines produced by CD4+ T helper 1 cells and CD8+ type 1 cytotoxic T cells, including IL-2, interferon-γ and tumour necrosis factor.

Indoleamine 2,3-dioxygenase

Haem-containing enzyme that catalyses the rate-limiting O2-dependent oxidation of l-tryptophan to N-formylkynurenine.

Warburg reaction

High glycolytic rate followed by lactic acid fermentation even in aerobic conditions. It has been described in tumour cells and more recently in CD8+ T cells as the preferential metabolic pathway for ATP synthesis, despite being less energy-efficient than oxidative phosphorylation.

GIT–PAK–PIX complex

Intracellular protein complex required for the dissociation of focal adhesions and for cellular motility.

Focal adhesions

Large supramolecular complexes that contain structural proteins involved in attachment to the extracellular matrix by mechanical force and regulatory signals.

Follicular Treg cells

Subpopulation of regulatory T (Treg) cells that function in lymphoid follicles and germinal centres to restrict and shape the maturation of B cell responses. Characterized by the expression of FOXP3, CXCR5 and ICOS.

CARMA1–BCL-10–MALT1 signalosome

Signalling complex assembled in T cells in response to protein kinase Cθ (PKCθ) activation by the scaffolding protein CARMA1. Promotes activation of the AP-1, mechanistic target of rapamycin (mTOR) and classical nuclear factor-κB pathways.

Chimeric antigen receptor

A B cell receptor-derived chimeric receptor that delivers a stimulatory signal upon binding of its cognate antigen without the need for presentation by MHC.

Immune-related adverse events

(IRAEs). Inflammatory events secondary to immunotherapy with immune checkpoint blocking agents.

Antibody-dependent cellular cytotoxicity

(ADCC). Mechanism whereby a cytotoxic immune cell lyses a target cell after recognizing specific antibodies bound to the surface of the target cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucca, L.E., Dominguez-Villar, M. Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 20, 680–693 (2020). https://doi.org/10.1038/s41577-020-0296-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-0296-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer