Skip to main content
Log in

Optimal bilinear control of stochastic nonlinear Schrödinger equations: mass-(sub)critical case

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study optimal control problems for stochastic nonlinear Schrödinger equations in both the mass subcritical and critical case. For general initial data of the minimal \(L^2\) regularity, we prove the existence and first order Lagrange condition of an open loop control. In particular, these results apply to the stochastic nonlinear Schrödinger equations with the critical quintic and cubic nonlinearities in dimensions one and two, respectively. Furthermore, we obtain uniform estimates of (backward) stochastic solutions in new spaces of type \(U^2\) and \(V^2\), adapted to evolution operators related to linear Schrödinger equations with lower order perturbations. These estimates yield a new temporal regularity of (backward) stochastic solutions, which is crucial for the tightness of approximating controls induced by Ekeland’s variational principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The endpoint case where \(q=2\) is not considered here.

References

  1. Bényi, Á., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \(R^d\), \(d\ge 3\). Trans. Am. Math. Soc. Ser. B 2, 1–50 (2015)

    MATH  Google Scholar 

  2. Bang, O., Christiansen, P.L., If, F., Rasmussen, K.O.: Temperature effects in a nonlinear model of monolayer Scheibe aggregates. Phys. Rev. E 49, 4627–4636 (1994)

    Google Scholar 

  3. Bang, O., Christiansen, P.L., If, F., Rasmussen, K.O., Gaididei, Y.B.: White noise in the two-dimensional nonlinear Schrödinger equation. Appl. Anal. 57(1–2), 3–15 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Barbu, V., Röckner, M.: An operatorial approach to stochastic partial differential equaitons driven by linear multiplicative noise. J. Eur. Math. Soc. 17(7), 1789–1815 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Barbu, V., Röckner, M., Zhang, D.: The stochastic nonlinear Schrödinger equation with multiplicative noise: the rescaling aproach. J. Nonlinear Sci. 24, 383–409 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Barbu, V., Röckner, M., Zhang, D.: Stochastic nonlinear Schrödinger equations. Nonlinear Anal. 136, 168–194 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Barbu, V., Röckner, M., Zhang, D.: Stochastic nonlinear Schrödinger equations: no blow-up in the non-conservative case. J. Differ. Equ. 263(11), 7919–7940 (2017)

    MATH  Google Scholar 

  8. Barbu, V., Röckner, M., Zhang, D.: Optimal bilinear control of nonlinear stochastic Schrödinger equations driven by linear multiplicative noise. Ann. Probab. 46(4), 1957–1999 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Barchielli, A., Gregorotti, M.: Quantum Trajectories and Measurements in Continuous Case. The Diffusion Case. Lecture Notes Physics, vol. 782. Springer, Berlin (2009)

    Google Scholar 

  10. Barchielli, A., Holevo, A.S.: Constructing quantum measurement processes via classical stochastic calculus. Stoch. Process. Appl. 58(2), 293–317 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Barchielli, A., Paganoni, A.M., Zucca, F.: On stochastic differential equations and semigroups of probability operators in quantum probability. Stoch. Process. Appl. 73(1), 69–86 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Beauchard, K., Coron, J.M., Mirrahimi, M., Rouchon, P.: Implicit Lyapunov control of finite dimensional Schrödinger equations. Syst. Control Lett. 56(5), 388–395 (2007)

    MATH  Google Scholar 

  13. Brzeźniak, Z., Hornung, F., Manna, U.: Weak martingale solutions for the stochastic nonlinear Schrödinger equation driven by pure jump noise. Stoch. Partial Differ. Equ. Anal. Comput. 8(1), 1–53 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Brzeźniak, Z., Hornung, F., Weis, L.: Uniqueness of martingale solutions for the stochastic nonlinear Schrödinger equation on 3D compact manifolds. arXiv:1808.10619

  15. Brzeźniak, Z., Hornung, F., Weis, L.: Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space. Probab. Theory Relat. Fields 174(3–4), 1273–1338 (2019)

    MATH  Google Scholar 

  16. Brzeźniak, Z., Millet, A.: On the stochastic Strichartz estimates and the stochastic nonlinear Schrödinger equation on a compact Riemannian manifold. Potential Anal. 41(2), 269–315 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Chihara, H.: Smoothing effects of dispersive pseudodifferential equations. Commun. Partial Differ. Equ. 27(9–10), 1953–2005 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R}}^3\). Ann. Math. (2) 167(3), 767–865 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  20. de Bouard, A., Debbusche, A.: A stochastic nonlinear Schrödinger equation with multiplicative noise. Commun. Math. Phys. 205, 161–181 (1999)

    MATH  Google Scholar 

  21. de Bouard, A., Debussche, A.: On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation. Probab. Theory Relat. Fields 123(1), 76–96 (2002)

    MATH  Google Scholar 

  22. de Bouard, A., Debbusche, A.: The stochastic nonlinear Schrödinger equation in \(H^1\). Stoch. Anal. Appl. 21, 97–126 (2003)

    Google Scholar 

  23. de Bouard, A., Debussche, A.: Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise. Ann. Probab. 33(3), 1078–1110 (2005)

    MathSciNet  MATH  Google Scholar 

  24. de Bouard, A., Hausenblas, E.: The nonlinear Schrödinger equation driven by jump processes. J. Math. Anal. Appl. 475(1), 215–252 (2019)

    MathSciNet  MATH  Google Scholar 

  25. de Bouard, A., Hausenblas, E., Ondreját, M.: Uniqueness of the nonlinear Schrödinger equation driven by jump processes. NoDEA Nonlinear Differ. Equ. Appl. 26(3), Art. 22 (2019)

  26. Dodson, B.: Global well-posedness and scattering for the defocusing, \(L^2\)-critical nonlinear Schrödinger equation when \(d\ge 3\). J. Am. Math. Soc. 25(2), 429–463 (2012)

    MATH  Google Scholar 

  27. Dodson, B.: Global well-posedness and scattering for the defocusing, L2 critical, nonlinear Schrödinger equation when \(d=1\). Am. J. Math. 138(2), 531–569 (2016)

    MATH  Google Scholar 

  28. Dodson, B.: Global well-posedness and scattering for the defocusing, L2-critical, nonlinear Schrödinger equation when d=2. Duke Math. J. 165(18), 3435–3516 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Doi, S.: Remarks on the Cauchy problem for Schrödinger-type equations. Commun. PDE 21, 163–178 (1996)

    MATH  Google Scholar 

  30. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    MathSciNet  MATH  Google Scholar 

  31. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1(3), 443–474 (1979)

    MathSciNet  MATH  Google Scholar 

  32. Fan, C.J., Xu, W.J.: Global well-posedness for the defocusing mass-critical stochastic nonlinear Schrödinger equation on \({\mathbb{R}}\) at \(L^2\) regularity, arXiv:1810.07925

  33. Fan, C.J., Xu, W.J.: Subcritical approximations to stochastic defocusing mass-critical nonlinear Schrödinger equation on \({\mathbb{R}}\). J. Differ. Equ. 268(1), 160–185 (2019)

    MATH  Google Scholar 

  34. Fuhrman, M., Orrieri, C.: Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift. SIAM J. Control Optim. 54(1), 341–371 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Fuhrman, M., Tessitore, G.: Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30, 1397–1465 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Hadac, M., Herr, S., Koch, H.: Well-posedness and scattering for the KP-II equation in a critical space. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 917–941 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Hadac, M., Herr, S., Koch, H.: Erratum to “Well-posedness and scattering for the KP-II equation in a critical space” [Ann. I. H. Poincaré Anal. 26 (3) (2009) 917–941]. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 971–972 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Herr, S., Tataru, D., Tzvetkov, N.: Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in \(H^1({\mathbb{T}}^3)\). Duke Math. J. 159(2), 329–349 (2011)

    MathSciNet  MATH  Google Scholar 

  39. Herr, S., Röckner, M., Zhang, D.: Scattering for stochastic nonlinear Schrödinger equations. Commun. Math. Phys. 368(2), 843–884 (2019)

    MATH  Google Scholar 

  40. Hintermüller, M., Marahrens, D., Markowich, P.A., Sparber, C.: Optimal bilinear control of Gross–Pitaevskii equations. SIAM J. Control Optim. 51(3), 2509–2543 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Hornung, F.: The nonlinear stochastic Schrödinger equation via stochastic Strichartz estimates. J. Evol. Equ. 18(3), 1085–1114 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Hu, Y., Peng, S.G.: Adapted solution of a backward semilinear stochastic evolution equation. Stoch. Anal. Appl. 9(4), 445–459 (1991)

    MathSciNet  MATH  Google Scholar 

  43. Itô, K., Kunish, K.: Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Control Optim. 46, 274–287 (2007)

    MathSciNet  Google Scholar 

  44. Keller, D.: Optimal control of a linear stochastic Schrödinger equation. In: Discrete Contin. Dyn. Syst. (2013), Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., pp. 437–446

  45. Keller, D.: Optimal control of a nonlinear stochastic Schrödinger equation. J. Optim. Theory Appl. 167(3), 862–873 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for quasi-linear Schrödinger equations. Invent. Math. 158(2), 343–388 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Koch, H., Tataru, D.: Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58(2), 217–284 (2005)

    MathSciNet  MATH  Google Scholar 

  48. Koch, H., Tataru, D.: A priori bounds for the 1D cubic NLS in negative Sobolev spaces. Int. Math. Res. Not. no. 16, Art. ID rnm053 (2007)

  49. Koch, H., Tataru, D., Visan, M.: Dispersive equations and nonlinear waves. In: Generalized Korteweg-de Vries, Nonlinear Schrödinger, Wave and Schrödinger Maps. Oberwolfach Seminars, vol. 45. Birkhäuser, Basel (2014)

  50. Lü, Q., Zhang, X.: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions. Springer Briefs in Mathematics. Springer, Cham (2014)

    MATH  Google Scholar 

  51. Liu, W., Röckner, M.: Stochastic Partial Differential Equations: An Introduction. Universitext. Springer, Cham (2015)

    MATH  Google Scholar 

  52. Marzuola, J., Metcalfe, J., Tataru, D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255(6), 1479–1553 (2008)

    MATH  Google Scholar 

  53. Mirrahimi, M., Rouchon, P., Turinici, G.: Lyapunov control of bilinear Schrödinger equations. Automatica 41, 1987–1994 (2005)

    MathSciNet  MATH  Google Scholar 

  54. Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28(4), 966–979 (1990)

    MathSciNet  MATH  Google Scholar 

  55. Rasmussen, K.O., Gaididei, Y.B., Bang, O., Chrisiansen, P.L.: The influence of noise on critical collapse in the nonlinear Schrödinger equation. Phys. Lett. A 204, 121–127 (1995)

    Google Scholar 

  56. Rockafellar, R.T.: Directionally Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. (3) 39(2), 331–355 (1979)

    MathSciNet  MATH  Google Scholar 

  57. Ryckman, E., Visan, M.: Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \(\mathbb{R}^{1+4}\). Am. J. Math. 129(1), 1–60 (2007)

    MATH  Google Scholar 

  58. Tao, T., Visan, M., Zhang, X.Y.: The nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Partial Differ. Equ. 32(7–9), 1281–1343 (2007)

    MATH  Google Scholar 

  59. Tessitore, G.: Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE. Stoch. Anal. Appl. 14, 461–486 (1996)

    MathSciNet  MATH  Google Scholar 

  60. Visan, M.: The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138(2), 281–374 (2007)

    MathSciNet  MATH  Google Scholar 

  61. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    MATH  Google Scholar 

  62. Zhang, D.: Stochastic nonlinear Schrödinger equation, PhD thesis, Universität Bielefeld (2014)

  63. Zhang, D.: Strichartz and local smoothing estimates for stochastic dispersive equations. arXiv:1709.03812

  64. Zhang, D.: Stochastic nonlinear Schrödinger equations in the defocusing mass and energy critical cases. arXiv:1811.00167v2

  65. Yong, J.M., Zhou, X.Y.: Stochastic Controls. Hamiltonian Systems And HJB Equations. Applications of Mathematics (New York), vol. 43. Springer, New York (1999)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Viorel Barbu for useful comments to improve this paper and Professor Daniel Tataru for valuable discussions on Strichartz and local smoothing estimates and \(U^p{-}V^p\) spaces. The author also thanks Yiming Su for discussions on tightness and Chenjie Fan for conversations on integrability of stochastic controlled solutions in the defocusing mass-critical case. Financial support by the NSFC (No. 11871337) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 3.8

Let \(I_j=[jh,(j+1)h]\), \(0\le j\le [\frac{T}{h}]-1=:L^*\). Since \(v\in C([0,T]; H)\), there exists \(t_j\in I_j\) such that \(\sup _{t\in I_j} \Vert v(t+h)-v(t)\Vert _H = \Vert v(t_j+h)-v(t_j)\Vert _H\), \(0\le j\le L^*\). Then,

$$\begin{aligned} \int _0^{T-h} \Vert v(t+h)-v(t)\Vert _H^p dt \le&\, h \sum \limits _{j=0}^{L^*} \Vert v(t_j+h)-v(t_j)\Vert _H^p. \end{aligned}$$

Moreover, letting \(\{t_j'\}_{j=0}^{L} = \{t_j+h, t_j\}_{j=0}^{L^*}\) we have that

$$\begin{aligned} \sum \limits _{j=0}^{L^*} \Vert v(t_j+h)-v(t_j)\Vert _H^p \le 2^{p+1} \sum \limits _{j=0}^{L-1} \Vert v(t'_{j+1})-v(t'_j)\Vert _H^p \le 2^{p+1} \Vert v\Vert _{V^p(0,T)}^p. \end{aligned}$$

Thus, combining the estimates above we prove (3.9). \(\square \)

Proof of Proposition 3.9

First we prove (3.10). It suffices to prove the case that \(V(t_0, \cdot ) u\) is a \(U^q\)-atom of the form \(V(t_0, t) u(t) = \sum _{j=1}^n u_j {{{\mathcal {X}}}}_{[t_j, t_{j+1})}(t)\), \(t\in I\), such that \(\{t_j\}_{j=1}^n \subseteq I\), \(\sum _{j=1}^n |u_j|_{L^2}^q = 1\). This yields that \(u(t) = \sum _{j=1}^n V(t, t_0) u_j {{{\mathcal {X}}}}_{[t_j, t_{j+1})}(t)\), and so

$$\begin{aligned} \Vert u\Vert ^q_{L^q(I; L^p)} = \sum \limits _{j=1}^n \Vert V(\cdot , t_0)u_j\Vert ^q_{L^q(t_j, t_{j+1}; L^p)}. \end{aligned}$$
(7.1)

Using Theorem 3.1 and \(\Vert V(t_j, t_0)\Vert _{{\mathcal {L}}(L^2, L^2)} \le C(T) \in L^\rho (\Omega )\) we have

$$\begin{aligned} \Vert V(\cdot , t_0)u_j\Vert ^q_{L^q(t_j, t_{j+1}; L^p)} =&\, \Vert V(\cdot , t_j) V(t_j, t_0)u_j\Vert ^q_{L^q(t_j, t_{j+1}; L^p)} \nonumber \\ \le&\, C_T^q |V(t_j, t_0) u_j |^q_{L^2} \le (C'(T))^q |u_j|^q_{L^2}, \end{aligned}$$
(7.2)

where \(C'(T)\) is independent of (pq) and \(C'(T) \in L^\rho (\Omega )\) for any \(1\le \rho <{\infty }\). Plugging (7.2) into (7.1) yields

$$\begin{aligned} \Vert u\Vert _{L^q(I; L^p)} \le C'(T) \left( \sum \limits _{j=1}^n|u_j|^q_{L^2}\right) ^{\frac{1}{q}} \le C'(T), \end{aligned}$$
(7.3)

which implies (3.10).

In order to prove (3.11), we see that for any partition \(\{t_j\}_{j=0}^m \in {\mathcal {Z}}\), since \(\Vert V(t_0,t_{j-1})\Vert _{{\mathcal {L}}(L^2, L^2)} \le C(T) \in L^\rho (\Omega )\), if \(\widetilde{f}:= {{\mathcal {X}}}_I f\),

$$\begin{aligned}&\bigg |\int _{t_{j-1}}^{t_{j}} V(t_0, s) \widetilde{f}(s) ds \bigg |_{L^2}\nonumber \\&\quad \le C(T) \bigg |\int _{t_{j-1}}^{t_{j}} V(t_{j-1}, s) \widetilde{f}(s) ds \bigg |_{L^2} \nonumber \\&\quad = C(T) \sup \limits _{|z|_{L^2}\le 1} \left<\int _{t_{j-1}}^{t_{j}} V(t_{j-1}, s) \widetilde{f}(s) ds, z\right>_2 \nonumber \\&\quad \le C(T) \Vert \widetilde{f}\Vert _{L^{q'}(t_{j-1}, t_{j}; L^{p'})} \sup \limits _{|z|_{L^2}\le 1} \Vert V^*(t_{j-1}, \cdot ) {{\mathcal {X}}}_I z\Vert _{L^q(t_{j-1}, t_{j}; L^p)}. \end{aligned}$$
(7.4)

Estimating as in [63, Lemma 5.3], we have

$$\begin{aligned} \Vert V^*(t_{j-1}, \cdot ) {{\mathcal {X}}}_I z\Vert _{L^q(t_{j-1}, t_{j}; L^p) \cap L^2(t_{j-1}, t_{j}; H^\frac{1}{2}_{-1})} \le C'(T) |z|_{L^2} \le C'(T), \end{aligned}$$
(7.5)

where \(C'(T) \in L^\rho (\Omega )\) for any \(1\le \rho <{\infty }\). Then, we get

$$\begin{aligned} \sum \limits _{j=1}^m \bigg |\int _{t_{j-1}}^{t_{j}} V(t_0, s) \widetilde{f}(s) ds \bigg |^{q'}_{L^2} \le&\, (C''(T))^{q'} \sum \limits _{j=1}^m \Vert \widetilde{f}\Vert ^{q'}_{L^{q'}(t_{j-1}, t_{j}; L^{p'})} \nonumber \\ =&\, (C''(T))^{q'} \Vert f\Vert ^{q'}_{L^{q'}(I; L^{p'})}, \end{aligned}$$
(7.6)

where \(C''(T)\in L^\rho (\Omega )\), \(\forall 1\le \rho <{\infty }\), independent of (pq). This implies (3.11).

Regarding (3.12), let \(f = f_1+f_2\) with \(f_1\in L^{q'}(I;L^{p'})\), \(f_2 \in L^2(I; H^{-\frac{1}{2}}_1)\), and set \(\widetilde{f}_j = {{\mathcal {X}}}_I f_j\), \(j=1,2\). We can take a finer partition \(\{t_j\}_{j=0}^m\) such that \(\Vert f\Vert _{L^{q'}(t_{j-1}, t_{j}; L^{p'})} \le 1\), \(1\le j\le m\). Then, estimating as in (7.6), since \(q>2\), \(q'<2\), we have

$$\begin{aligned}&\sum \limits _{j=1}^m \bigg |\int _{t_{j-1}}^{t_{j}} V(t_0, s) \widetilde{f}_1(s) ds \bigg |^{2}_{L^2}\\&\quad \le (C''(T))^{2} \sum \limits _{j=1}^m \Vert \widetilde{f}_1\Vert ^{2}_{L^{q'}(t_{j-1}, t_{j}; L^{p'})} \le (C''(T))^{2} \Vert f_1\Vert ^{q'}_{L^{q'}(I; L^{p'})}, \end{aligned}$$

which implies that

$$\begin{aligned} \bigg \Vert \int _{t_0}^\cdot V(t_0, s) f_1(s) ds \bigg \Vert _{V^2(I)} \le C''(T) \Vert f_1\Vert ^{\frac{q'}{2}}_{L^{q'}(I; L^{p'})} \le C''(T) (1+ \Vert f_1\Vert _{L^{q'}(I; L^{p'})}). \end{aligned}$$
(7.7)

Moreover, arguing as in the proof of (7.4) and using (7.5) we have

$$\begin{aligned} \sum \limits _{j=1}^m \bigg |\int _{t_{j-1}}^{t_{j}} V(t_0, s) \widetilde{f}_2(s) ds \bigg |^2_{L^2} \le (C''(T))^2 \Vert f_2\Vert ^2_{L^{2}(I; H^{-\frac{1}{2}}_1)}. \end{aligned}$$

This yields that

$$\begin{aligned} \bigg \Vert \int _{t_0}^\cdot V(t_0, s) f_2(s) ds \bigg \Vert _{V^2(I)} \le C''(T) \Vert f_2\Vert _{L^{2}(I; H^{-\frac{1}{2}}_1)}. \end{aligned}$$
(7.8)

Therefore, combining (7.7) and (7.8) together we prove (3.12). \(\square \)

In order to prove Theorem 3.13, we first prove the short-time perturbation result below as in [64].

Proposition 7.1

(Mass-Critical Short-time Perturbation). Consider the situations in Theorem 3.13. Assume also the smallness conditions

$$\begin{aligned}&|I|+ \Vert \widetilde{v}\Vert _{L^{q}(I; L^p)} \le \delta , \end{aligned}$$
(7.9)
$$\begin{aligned}&\Vert V(\cdot , t_0)(v(t_0)-\widetilde{v}(t_0) -R(t_0)) \Vert _{L^{q}(I; L^p)} \le {\varepsilon }, \ \Vert R\Vert _{L^{q}(I; L^p) \cap L^1(I; L^2)} \le {\varepsilon },\ \end{aligned}$$
(7.10)
$$\begin{aligned}&\Vert e \Vert _{{N}^0(I) + L^2(I; H^{- \frac{1}{2}}_{1})} \le {\varepsilon } \end{aligned}$$
(7.11)

for some \(0<{\varepsilon }\le \delta \) where \(\delta = \delta (C_T)>0\) is a small constant, and \(C_T\) is as in Theorem 3.13. Then, we have

$$\begin{aligned}&\Vert v-\widetilde{v} -R\Vert _{L^{q}(I; L^p) \cap C(I; L^2)} \le C(C_T) {\varepsilon }, \end{aligned}$$
(7.12)
$$\begin{aligned}&\Vert i (F(v) - F(\widetilde{v})) + G(v- \widetilde{v} - R) \Vert _{{N}^0(I)} \le C(C_T) {\varepsilon }, \end{aligned}$$
(7.13)

where \((\delta (C_T))^{-1}\), \(C(C_T)\) can be taken to nondecreasing with respect to \(C_T\).

Proof

We mainly prove Proposition 7.1 for the case where p satisfies that \(\frac{1}{p} \in (\max \{\frac{1}{2{\alpha }}, \frac{1}{2} - \frac{1}{2d}\}, \frac{1}{{\alpha }}(\frac{1}{2} + \frac{1}{d}))\) with \(1\le d\le 3\), \({\alpha }=1+\frac{4}{d}\). The case \(p =2+\frac{4}{d}\) with \(d\ge 1\) can be proved similarly.

As mentioned below Hypothesis \((H0)^*\), there exists another Strichartz pair \((\widetilde{p}, \widetilde{q})\) such that \((\frac{1}{\widetilde{p}'}, \frac{1}{\widetilde{q}'}) = (\frac{{\alpha }}{p}, \frac{{\alpha }}{q})\), where \(q\in (2,{\infty })\) is such that (pq) is a Strichartz pair, and \(\widetilde{p}', \widetilde{q}'\) are the conjugate numbers of \(\widetilde{p}, \widetilde{q}\) respectively.

Let \(z:= v -\widetilde{v} - R\), \(F(\widetilde{v}):=|\widetilde{v}|^{\frac{4}{d}} \widetilde{v}\) and \(F(z +R+ \widetilde{v})\) be defined similarly. By equations (3.17) and (3.18),

$$\begin{aligned} z(t) =&\, V(t,t_0)z(t_0) + \int _{t_0}^t V(t,s) \big (i (F(z + R+\widetilde{v}) - F(\widetilde{v})) + Gz + GR + e \big ) ds. \end{aligned}$$
(7.14)

We set \(S(I):= \Vert i (F(z + R+\widetilde{v}) - F(\widetilde{v})) +Gz\Vert _{ N^0(I)}\). By Hölder’s inequality and (7.9)–(7.11),

$$\begin{aligned} S(I) \le&\, \Vert (F(z+R+\widetilde{v}) - F(\widetilde{v}))\Vert _{L^{\widetilde{q}'}(0,T; L^{\widetilde{p}'})} + \Vert Gz\Vert _{L^1(0,T;L^2)} \nonumber \\ \le&\, C\left( \Vert \widetilde{v}\Vert _{L^q(I; L^p)}^{\frac{4}{d}} \Vert z + R\Vert _{L^q(I; L^p)} + \Vert z + R\Vert _{L^q(I; L^p)}^{1+\frac{4}{d}}\right) + \Vert Gz\Vert _{L^1(I; L^2)} \nonumber \\ \le&\, C_1\left( \delta ^{\frac{4}{d}}{\varepsilon }+ \delta ^{\frac{4}{d}} \Vert z\Vert _{L^q(I; L^p)} + \delta \Vert z\Vert _{C(I; L^2)} + \Vert z\Vert _{L^q(I; L^p)}^{1+\frac{4}{d}}\right) , \end{aligned}$$
(7.15)

where \(C_1(\ge 1)\) depends on d and \(\Vert G\Vert _{L^{\infty }}(I\times {{\mathbb {R}}}^d)\). Moreover, applying Theorem 3.1 to (7.14) and using (7.10) and (7.11) we have

$$\begin{aligned} \Vert z\Vert _{L^q(I; L^p) \cap C(I; L^2)} \le&\, C_T (\Vert V(\cdot , t_0)z(t_0)\Vert _{L^q(I; L^p)} + S(I) \nonumber \\&\quad + \Vert GR\Vert _{L^1(I; L^2)} + \Vert e\Vert _{N^0(I) + L^2(I; H^{- \frac{1}{2}}_{1})}) \nonumber \\ \le&\, C_2C_T ({\varepsilon }+ S(I)), \end{aligned}$$
(7.16)

where \(C_2\) depends on \(\Vert G\Vert _{L^{\infty }}(I\times {{\mathbb {R}}}^d)\). Then, combining (7.15), (7.16) we get

$$\begin{aligned} \Vert z\Vert _{L^{q}(I; L^p)\cap C(I; L^2)} \le&\, C_1C_2C_T \big (2{\varepsilon }+ (\delta ^{\frac{4}{d}} + \delta ) \Vert z\Vert _{L^q(I; L^p)\cap C(I; L^2)} + \Vert z\Vert _{L^q(I; L^p)}^{1+\frac{4}{d}}\big ). \end{aligned}$$

Thus, in view of Lemma 6.1 in [8], taking \(\delta = \delta (C_T)\) small enough such that \(C_1C_2C_T(\delta ^{\frac{4}{d}} + \delta ) \le \frac{1}{2}\) and \(4C_1C_2C_T \delta < (1-\frac{1}{{\alpha }})(2{\alpha }C_1C_2C_T)^{-\frac{1}{{\alpha }-1}}\) we obtain (7.12). Moreover, plugging (7.12) into (7.15) we obtain (7.13).

Therefore, the proof is complete. \(\square \)

Proof of Theorem 3.13

First fix \(\delta = \delta (C_T)\) as in Proposition 7.1. We divide \([t_0,T]\) into finitely many subintervals \([t'_j,t'_{j+1}]\), \(0\le j\le l'\), such that \(t'_{j+1} = \inf \{t>t'_j; \Vert \widetilde{v}\Vert _{L^{q}(t'_j,t; L^p)} =\frac{\delta }{2}\} \wedge T\). Then, \(l'\le (2L/\delta )^{2+\frac{4}{d}}<{\infty }\).

Take a new partition \(\{I_j\}_{j=0}^l:= \{[t_j, t_{j+1}]\}_{j=0}^l\) of [0, T], such that \(\{t_j; 0\le j\le l+1\} = \{t'_j; 0\le j\le l'+1\} \cup \{t_0 + \frac{j\delta }{2}; 0\le j\le [\frac{2(T-t_0)}{\delta }]\}\). Then,

$$\begin{aligned} l\le (2L/\delta )^{2+\frac{4}{d}} + [2(T-t_0)/\delta ], \ \ |I_j| + \Vert \widetilde{v}\Vert _{L^{q}(I_j; L^p)} \le \delta ,\ \ 0\le j\le l. \end{aligned}$$

Let \(C(0) = C(C_T)\), \(C(j+1) = C(0)C_T^2 (\sum _{k=0}^j C(k)+ \Vert G\Vert _{L^{\infty }}\)\(+2)\), \(0\le j\le l-1\), where \(C(C_T)\) and \(C_T\) are the constants in Proposition 7.1 and Theorem 3.1, respectively. Choose \({\varepsilon }_*= {\varepsilon }_*(C_T, L)\) sufficiently small such that

$$\begin{aligned} C_T^2 \left( \sum \limits _{k=0}^l C(k) +\Vert G\Vert _{L^{\infty }} + 2\right) {\varepsilon }_* \le \delta . \end{aligned}$$
(7.17)

We claim that (7.12) and (7.13) hold on \(I_j\) with C(j) replacing \(C(C_T)\) for every \(0\le j\le l\).

To this end, we first see that Proposition 7.1 yields the claim for \(j=0\). Suppose that the claim is also valid for each \(0\le k\le j<l\). We shall use Proposition 7.1 to show that it also holds on \(I_{j+1}\).

For this purpose, applying Theorem 3.1 to (7.14) again and using (3.20), (7.17) and the inductive assumption we have

$$\begin{aligned}&\Vert V(\cdot , t_{j+1})(v(t_{j+1}) - \widetilde{v}(t_{j+1}) -R(t_{j+1}))\Vert _{L^{q}(I_{j+1}; L^p)} \\&\quad \le \Vert V(\cdot , t_0)(v(t_0)-\widetilde{v}(t_0))\Vert _{L^{q}(I; L^p)} \\&\quad + C^2_T \big ( S(t_0, t_{j+1}) + \Vert GR\Vert _{L^1(t_0,t_{j+1};L^2)} + \Vert e\Vert _{N^0(t_0, t_{j+1}) + L^2(t_0,t_{j+1}; H^{-\frac{1}{2}}_1)} \big ) \\&\quad \le {\varepsilon }+ C_T^2 \big (\sum \limits _{k=0}^j C(k) {\varepsilon }+ \Vert G\Vert _{L^{\infty }(I\times {{\mathbb {R}}}^d)}{\varepsilon }+{\varepsilon }\big ) \le \delta . \end{aligned}$$

Thus, the conditions (7.9)–(7.11) of Proposition 7.1 are satisfied with \(C_T^2\)\((\sum _{k=0}^j C(k)+ \Vert G\Vert _{L^{\infty }}+2){\varepsilon }\) replacing \({\varepsilon }\). Applying Proposition 7.1 we prove the claim on \(I_{j+1}\).

Therefore, using inductive arguments we prove the claim on \(I_j\) for every \(0\le j\le l\), thereby proving Theorem 3.13. The proof is complete. \(\square \)

Proof of (4.14)

The proof is similar to that in [32]. Without loss of generality, we may assume \(\rho \ge q\). By Minkowski’s inequality and Burkholder’s inequality,

$$\begin{aligned} \Vert M_1^*\Vert _{L^\rho (\Omega ; L^1(0,T))} \le&\, C \Vert M_1^*\Vert _{L^1(0,T; L^\rho (\Omega ))} \nonumber \\ \le&\, C \bigg \Vert \bigg |\int _0^\cdot \Vert e^{-i(\cdot -s)\Delta } X(s)\Phi \Vert ^2_{HS({{\mathbb {R}}}^N; L^2)} ds\bigg |^{\frac{1}{2}} \bigg \Vert _{L^1(0,T)}, \end{aligned}$$
(7.18)

where the operator \(\Phi : {{\mathbb {R}}}^N \mapsto L^{\infty }\) is defined by \(\Phi (x) = \sum _{j=1}^N \mu _j e_j x_j\) for \(x= (x_1,\ldots , x_N)\), and \(\Vert \cdot \Vert _{HS({{\mathbb {R}}}^N; L^2)}\) denotes the Hilbert-Schmidt norm (see, e.g., [51]). Note that,

$$\begin{aligned} \Vert e^{-i(t -s)\Delta } X(s)\Phi \Vert ^2_{HS({{\mathbb {R}}}^N; L^2)} \le&\, C \sum \limits _{j=1}^N |\mu _j|^2|e_j|^2_{L^{\infty }} |X_0|^2_{L^2}. \end{aligned}$$

Plugging this into (7.18) and taking into account that the upper bound is independent of \(u\in {{\mathcal {U}}}_{ad}\) we obtain \(\sup _{u\in {{\mathcal {U}}}_{ad}}\Vert M_1^*\Vert _{L^\rho (\Omega ; L^1(0,T))} <{\infty }\).

Similarly, again by Minkowski’s inequality and Burkholder’s inequality,

$$\begin{aligned} \Vert M_2^*\Vert _{L^\rho (\Omega ; L^q(0,T))} \le&\, \Vert M_2^*\Vert _{L^q(0,T; L^\rho (\Omega ))} \nonumber \\ \le&\, C(\rho , T) \bigg \Vert \bigg |\int _0^\cdot \Vert e^{-i(\cdot -s)\Delta } X(s)\Phi \Vert ^2_{{\mathcal {R}}({{\mathbb {R}}}^N; L^p)} ds\bigg |^{\frac{1}{2}} \bigg \Vert _{L^q(0,T)}, \end{aligned}$$
(7.19)

where \(\Vert \cdot \Vert _{{\mathcal {R}}({{\mathbb {R}}}^N; L^p)}\) denotes the \({\gamma }\)-radonifying norm (see, e.g., [20, 22, 32]).

Note that, by the dispersive inequality \(\Vert e^{-i(t-s)\Delta }\Vert _{{\mathcal {L}}(L^{p'}, L^p)} \le C (t-s)^{-\frac{d}{2}(1-\frac{2}{p})}\),

$$\begin{aligned}&\Vert e^{-i(t -s)\Delta } X(s)\Phi \Vert _{{\mathcal {R}}({{\mathbb {R}}}^N; L^p)}\\&\quad \le \Vert \Phi \Vert _{{\mathcal {R}}({{\mathbb {R}}}^N; L^{\frac{2p}{p-2}})} \Vert X(s)\Vert _{{\mathcal {L}}(L^{\frac{2p}{p-2}}, L^{p'})} \Vert e^{-i(t-s)\Delta }\Vert _{{\mathcal {L}}(L^{p'}; L^p)} \\&\quad \le C(N)|X_0|_{L^2} \left( \sum \limits _{j=1}^N |\mu _j|^2 |e_j|^2_{L^{\frac{2p}{p-2}}}\right) ^\frac{1}{2} (t-s)^{-\frac{d}{2}(1-\frac{2}{p})}. \end{aligned}$$

Therefore, since the upper bound is independent of \(u\in {{\mathcal {U}}}_{ad}\), using (7.19) we obtain that \( \sup _{u\in {{\mathcal {U}}}_{ad}} \Vert M_2^*\Vert _{L^\rho (\Omega ; L^q(0,T))} <{\infty }\) if \(p<\frac{2d}{d-1}\) and so finish the proof. \(\square \)

Theorem 7.2

([31, Theorem 1], see also [30]) Let V be a complete metric space, and \(F:V \mapsto {{\mathbb {R}}}\cup \{+{\infty }\}\) a l.s.c. function, \(\not \equiv +{\infty }\), bounded from below. Let \({\varepsilon }>0\) be given, and a point \(u\in V\) such that \(F(u) \le \inf _{V}F +{\varepsilon }\). Then, there exists some point \(v\in V\) such that \(F(v) \le F(u)\), \(d(u,v) \le 1\), and

$$\begin{aligned} F(w)> F(v) - {\varepsilon }d(v,w),\ \ \forall w\not =v. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D. Optimal bilinear control of stochastic nonlinear Schrödinger equations: mass-(sub)critical case. Probab. Theory Relat. Fields 178, 69–120 (2020). https://doi.org/10.1007/s00440-020-00971-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-020-00971-0

Keywords

Mathematics Subject Classification

Navigation