Skip to main content

Advertisement

Log in

Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Four phosphate rock-solubilizing bacteria (PRSB) (Asaia lannensis Vb1, Pseudomonas sp. Vr14, Rahnella sp. Sr24, and Pantoea sp. Vr25) isolated from the mycorrhizosphere of maize were evaluated as inoculants, individually or in different combinations, together with Rhizophagus irregularis DAOM 197198, under greenhouse conditions. To create an effective bacterial mix for P solubilization and growth promotion, parameters such as the ability of the strains (individually or in mixture) to mobilize phosphate rock (PR), their biocompatibility, and their capacity for biofilm formation over PR particles and root colonization were tested. Accompanying PR solubilization, the bacteria produced organic acids and reduced the pH of the medium, produced exopolysaccharides, and had variable capacity to colonize the roots of maize plantlets. In low-phosphorus soil amendment with PR, all strains, regardless of their capacity to solubilize PR, increased dry weight, nutrient (N, P, and K) uptake, and the percentage of indigenous arbuscular mycorrhizae (iAM) root colonization in maize plants, compared to the non-inoculated control. However, mixed inoculation of the strains showed significantly better results. Addition of Rhizophagus irregularis resulted in further growth stimulation. Overall results showed that two combinations—Rahnella sp. Sr24 + Pantoea sp. Vr25 + R. irregularis, and Pantoea sp. Vr25 + Pseudomonas sp. Vr14 + R. irregularis—were better inoculants. We concluded that an effective PRSB combination of biocompatible strains with capacity for PR solubilization, successful biofilm formation, effective root colonization, different growth promotion traits, and the addition of AM has potential as inoculants for more sustainable agriculture in low-phosphorus soils amended with low-reactivity PR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansari FA, Ahmad I (2019a) Fluorescent Pseudomonas- FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep 9:4547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ansari FA, Ahmad I (2019b) Isolation, functional characterization and efficiacy of biofilm-forming rhizobacteria under abiotic stress conditions. Antonie Van Leeuwenhoek 112:1827–1839. https://doi.org/10.1007/s10482-019-01306-3

    Article  PubMed  CAS  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    Article  CAS  Google Scholar 

  • Backer R, Rokem S, Ilangumaran G, Lamont J, Praslickova D, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1–17

    Article  Google Scholar 

  • Barahona E, Navazo A, Yousef-Coronado F, Aguirre de Cárcer D, Martínez-Granero F, Espinosa-Urgel M, Martín M, Rivilla R (2010) Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 12:3185–3195

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2015) Inoculants for Azospirillum. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Technical issues and protocols. Springer, International Publishing, Cham, pp 469–485

    Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479

    Article  CAS  Google Scholar 

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Nature:1–11

  • Chen GC, He ZL, Huang CY (2000) Microbial biomass phosphorus and its significance in predicting phosphorus availability in red soils. Commun Soil Sci Plan 31:655–667

    Article  CAS  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Fryer HJ, Davis GE, Manthorpe M, Varon S (1986) Lowry protein assay using an automatic microtiter plate spectrophotometer. Anal Biochem 153:262–266

    Article  PubMed  CAS  Google Scholar 

  • Furtner B, Brand T, Jung V, Alsanius B (2007) Effect of polysaccharides in slow filters integrated into closed hydroponic greenhouse system. J Hortic Sci Biotechnol 82:55–60

    Article  CAS  Google Scholar 

  • Ghosh R, Barman S, Mandal NC (2019) Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Sci Rep 9:5477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: one hundred years of insolubility. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization, Developments in plant and soil sciences, vol 102. Springer, Dordrecht, pp 91–96

    Chapter  Google Scholar 

  • Gupta G, Snehi SK, Singh V (2017) Role of PGPR in biofilm formation and its importance in plant health. In: Ahmad I, Husain FM (eds) Biofilms in plant and soil health. Wiley, Hoboken, pp 27–42

    Chapter  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    Article  PubMed  CAS  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:298–938

    Article  CAS  Google Scholar 

  • Hinsinger P, Brauman A, Devau N, Gérard F, Jourdan C, Laclau JP, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61

    Article  CAS  Google Scholar 

  • Isaac RA, Johnson WC (1976) Determination of total nitrogen in plant tissue using a block digestor. J Assoc Off Anal Chem 59:98–100

    CAS  Google Scholar 

  • Jones AA, Beent PC (2017) Mineral ecology: surface specific colonization and geochemical drivers of biofilm accumulation, composition and phylogeny. Front Microbiol 8:1–14

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganism in sustainable agriculture- a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan N, Bano A, Rahman MA, Guo J, Kan Z, Babar MA (2019) Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in chickpea (Cicer arietinum L.) induced by PGPR and PGRs. Sci Rep 9:2097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu D, Lau YL, Chau YK, Pacepavicius G (1994) Simple technique for estimation of biofilm accumulation. B Environ Contam Tox 53:913–918

    Article  CAS  Google Scholar 

  • Mäder P, Kaiser F, Adholeya A, Singh R, Uppal HS, Sharma AK, Srivastava R, Sahai V, Aragno M, Wiemken A, Johri BN, Fried PM (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619

    Article  CAS  Google Scholar 

  • Magallon-Servin P, Antoun H, Taktek S, Bashan Y, de-Bashan LE (2019) The maize mycorrhizosphere as a source for isolation of arbuscular mycorrhizae-compatible phosphate rock-solubilizing bacteria. Plant Soil:1–18. https://doi.org/10.1007/s11104-019-04226-3

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Mickan BS, Abbot LK, Solaiman ZM (2019) Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol Fertil Soils 55:53–66

    Article  CAS  Google Scholar 

  • Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  PubMed  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified method for the determination of phosphate in natural water. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  PubMed  CAS  Google Scholar 

  • Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Rodríguez-Cerrato V, Ponte MC, Soriano F (2008) Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol 105:585–590

    Article  PubMed  CAS  Google Scholar 

  • Nkonge C, Balance GM (1982) A sensitive colorimetric procedure for nitrogen determination in micro-Kjeldahl digests. J Agric Food Chem 30:416–420

    Article  CAS  Google Scholar 

  • Ordoñez YM, Fernandez BR, Lara LS, Rodríguez A, Uribe-Vélez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outisde the root and in the presence of native microbial communities. PLoS One 11(6):e0154438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey P, Bisht S, Sood A, Aeron A, Sharma GD, Maheshwari DK (2012) Consortium of plant growth-promoting-bacteria: future perspectives in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin, pp 185–200

    Chapter  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizalo fungi for rapid assessment of infection. T Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pliego C, de Weert S, Lamers G, de Vicente A, Bloemberg G, Cazorla FM, Ramos C (2008) Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Environ Microbiol 10:3295–3304

    Article  PubMed  Google Scholar 

  • Raklami A, Bechtaoui N, Tahiri A, Anli M, Meddich A, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open filed as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1–11

    Article  Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    Article  CAS  Google Scholar 

  • Shoemaker HE, McLean EO, Pratt PF (1961) Buffer methods for determination of lime requirements of soils with appreciable amount of exchangeable aluminum. Soil Sci Soc Am Proc 25:274–277

    Article  CAS  Google Scholar 

  • Taktek S, Trépanier M, Magallon-Servin P, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2015) Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol Biochem 90:1–9

    Article  CAS  Google Scholar 

  • Taktek S, St-Arnaud M, Piché Y, Fortin A, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregularis DAOM 197198. Mycorrhiza 27:13–22

    Article  PubMed  CAS  Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turnbull GA, Morgan JA, Whipps JM, Saunders JR (2001) The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol Ecol 35:57–65

    Article  PubMed  CAS  Google Scholar 

  • Ueshima M, Fortin D, Kalin M (2004) Development of iron-phosphate biofilms on pyritic mine waste rock surfaces previously treated with natural phosphate rocks. Geomicrobiol J 21:313–323

    Article  CAS  Google Scholar 

  • Van Vuuren DP, Bouwman AF, Beusen AHW (2010) Phosphorus demand for the 1970-2100 period: a scenario analysis of resource depletion. Glob Environ Chang 20(9):428–439

    Article  Google Scholar 

  • Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang D, Xu A, Elmerich C, Ma LZ (2017) Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME J 11:1602–1613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiao D, Che R, Liu X, Tan Y, Yang R, Zhang W, He X, Xu Z, Wang K (2019) Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biol Fertil Soils 55:457–469

    Article  CAS  Google Scholar 

  • Zhang LA, Wang D, Hu Q, Dai X, Xie Y, Li Q, Liu H, Guo J (2019) Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10:1–10

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada for the funding and the technical support. At the Centre of Recherché en Horticulture (CHR), Université Laval, we thank Dr. Martin Trepanier and Marie-Pierre Lammy for the support in statistical analysis, and Dr. Patrice Dion, M.Sc. Marie-Claude Julien, Dr. Henri Fankem, Dr. Antoine Dionne, and Robert Kawa for the general advice of the work. At CIBNOR, we thank Manuel Moreno for his help on preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz E. de-Bashan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magallon-Servin, P., Antoun, H., Taktek, S. et al. Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR. Biol Fertil Soils 56, 521–536 (2020). https://doi.org/10.1007/s00374-020-01452-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-020-01452-1

Keywords

Navigation