Skip to main content
Log in

The continuation and stability analysis methods for quasi-periodic solutions of nonlinear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The continuation and stability analysis methods for quasi-periodic solutions of nonlinear systems are proposed. The proposed continuation method advances the predictor–corrector continuation framework by coupling the reduced space sequential quadratic programming method with the multi-dimensional harmonic balance method and the gradients required for the continuation problem are derived. In order to determine the stability of quasi-periodic solution, a novel approach based on the analytical formulation of the harmonic balance equations is presented by using the Floquet theory with the perturbation term applied to the known quasi-periodic solution. Sensitivity analysis about the stability factor of quasi-periodic solution is also carried out. Finally, the effectiveness and applicability of the proposed methodology is verified and illustrated by two numerical examples. The proposed approaches have been demonstrated to be able to trace the aperiodic solutions of nonlinear systems and analyze their stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Awrejcewicz, J., Someya, T.: Periodic, quasi-periodic and chaotic orbits and their bifurcations in a system of coupled oscillators. J. Sound Vib. 146(3), 527–532 (1991)

    MathSciNet  Google Scholar 

  2. Awrejcewicz, J.: Numerical analysis of the oscillations of human vocal cords. Nonlinear Dyn. 2(1), 35–52 (1991)

    MathSciNet  Google Scholar 

  3. Awrejcewicz, J.: Three routes to chaos in simple sinusoidally driven oscillators. ZAMM J. Appl. Math. Mech. 71(2), 71–79 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Sharma, A., Sinha, S.C.: Control of nonlinear systems exhibiting chaos to desired periodic or quasi-periodic motions. Nonlinear Dyn. 99, 559–574 (2019)

    MATH  Google Scholar 

  5. Breunung, T., Haller, G.: When does a periodic response exist in a periodically forced multi-degree-of-freedom mechanical system. Nonlinear Dyn. 98, 1761–1780 (2019)

    MATH  Google Scholar 

  6. Yuan, T.C., Yang, J., Chen, L.Q.: A harmonic balance approach with alternating frequency/time domain progress for piezoelectric mechanical systems. Mech. Syst. Signal Process. 120, 274–289 (2019)

    Google Scholar 

  7. Leung, A.Y.T., Guo, Z.: Residue harmonic balance approach to limit cycles of non-linear jerk equations. Int. J. Nonlinear Mech. 46, 898–906 (2011)

    Google Scholar 

  8. Ranjbarzadeh, H., Kakavand, F.: Determination of nonlinear vibration of 2DOF system with an asymmetric piecewise-linear compression spring using incremental harmonic balance method. Eur. J. Mech. A/Solids 73, 161–168 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Jahn, M., Tatzko, S., Panning-von Scheidt, L., et al.: Comparison of different harmonic balance based methodologies for computation of nonlinear modes of non-conservative mechanical systems. Mech. Syst. Signal Process. 127, 159–171 (2019)

    Google Scholar 

  10. Wang, X., Zhu, W., Zhao, X.: An incremental harmonic balance method with a general formula of jacobian matrix and a direct construction method in stability analysis of periodic responses of general nonlinear delay differential equations. J. Appl. Mech. 86(6), 061011 (2019)

    Google Scholar 

  11. Zhou, S., Song, G., Li, Y., et al.: Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. Nonlinear Dyn. 98, 75–94 (2019)

    MATH  Google Scholar 

  12. Liao, H., Sun, W.: A new method for predicting the maximum vibration amplitude of periodic solution of non-linear system. Nonlinear Dyn. 71(3), 569–582 (2013)

    MathSciNet  Google Scholar 

  13. Liao, H.: Optimization analysis of Duffing oscillator with fractional derivatives. Nonlinear Dyn. 79(2), 1311–1328 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Liao, H., Wu, W., Fang, D.: The reduced space sequential quadratic programming (SQP) method for calculating the worst resonance response of nonlinear systems. J. Sound Vib. 425, 301–323 (2018)

    Google Scholar 

  15. Allgower, E.L., Georg, K.: Numerical Continuation Methods: An Introduction. Springer, Berlin (2012)

    MATH  Google Scholar 

  16. Sarrouy, E., Sinou, J.-J.: Non-linear periodic and quasi-periodic vibrations in mechanical systems—on the use of the harmonic balance methods. In: Ebrahimi, F. (Ed.), Advances in Vibration Analysis Research, INTECH, Open Access Publisher (2011), Chapter 21

  17. Krauskopf, B., Osinga, H.M., Galán-Vioque, J.: Numerical Continuation Methods for Dynamical Systems. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  18. Liu, F., Zhou, J.: Shooting and arc-length continuation method for periodic solution and bifurcation of nonlinear oscillation of viscoelastic dielectric elastomers. J. Appl. Mech. 85(1), 011005 (2018)

    MathSciNet  Google Scholar 

  19. Renault, A., Thomas, O., Mahe, H.: Numerical antiresonance continuation of structural systems. Mech. Syst. Signal Process. 116, 963–984 (2019)

    Google Scholar 

  20. Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324, 243–262 (2009)

    Google Scholar 

  21. Guillot, L., Cochelin, B., Vergez, C.: A Taylor series-based continuation method for solutions of dynamical systems. Nonlinear Dyn. 98, 2827–2845 (2019)

    MATH  Google Scholar 

  22. Guillot, L., Vergez, C., Cochelin, B.: Continuation of periodic solutions of various types of delay differential equations using asymptotic numerical method and harmonic balance method. Nonlinear Dyn. 97, 123–134 (2019)

    MATH  Google Scholar 

  23. Guskov, M., Sinou, J.-J., Thouverez, F.: Multi-dimensional harmonic balance applied to rotor dynamics. Mech. Res. Commun. 35, 537–545 (2008)

    MATH  Google Scholar 

  24. Awrejcewicz, J., Reinhardt, W.D.: Some comments about quasi-periodic attractors. J. Sound Vib. 139, 347–350 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Awrejcewicz, J., Reinhardt, W.D.: Quasiperiodicity, strange non-chaotic and chaotic attractors in a forced two degrees-of-freedom system. ZAMP J. Appl. Math. Phys. 41(5), 713–727 (1990)

    MATH  Google Scholar 

  26. Awrejcewicz, J.: Quasi-periodic solutions analytical and numerical investigations. Comput. Assist. Mech. Eng. Sci. 2, 1–17 (1995)

    Google Scholar 

  27. Jain, S., Breunung, T., Haller, G.: Fast computation of steady-state response for high-degree-of-freedom nonlinear systems. Nonlinear Dyn. 97, 313–341 (2019)

    MATH  Google Scholar 

  28. Huang, J.L., Zhou, W.J., Zhu, W.D.: Quasi-periodic motions of high-dimensional nonlinear models of a translating beam with a stationary load subsystem under harmonic boundary excitation. J. Sound Vib. 462, 114870 (2019)

    Google Scholar 

  29. Liu, G., Lv, Z.R., Liu, J.K., et al.: Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method. Int. J. Non-Linear Mech. 100, 10–19 (2018)

    Google Scholar 

  30. Zhou, B., Thouverez, F., Lenoir, D.: A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems. Mech. Syst. Signal Process. 6465, 233–244 (2015)

    Google Scholar 

  31. Kim, Y.B., Noah, S.T.: Quasi-periodic response and stability analysis for a non-linear Jeffcott rotor. J. Sound Vib. 190(2), 239–253 (1996)

    Google Scholar 

  32. Fontanela, F., Grolet, A., Salles, L., et al.: Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods. J. Sound Vib. 438, 54–65 (2019)

    Google Scholar 

  33. Liao, H.: Global resonance optimization analysis of nonlinear mechanical systems: application to the uncertainty quantification problems in rotor dynamics. Commun. Nonlinear Sci. Numer. Simul. 19(9), 3323–3345 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Peletan, L., Baguet, S., Torkhani, M., et al.: Quasi-periodic harmonic balance method for rubbing self-induced vibrations in rotor-stator dynamics. Nonlinear Dyn. 78(4), 2501–2515 (2014)

    Google Scholar 

  35. Guillot, L., Vigué, P., Vergez, C., et al.: Continuation of quasi-periodic solutions with two-frequency harmonic balance method. J. Sound Vib. 394, 434–450 (2017)

    Google Scholar 

  36. Salles, L., Staples, B., Hoffmann, N., Schwingshackl, C.: Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions. Nonlinear Dyn. 86, 1897–1911 (2016)

    Google Scholar 

  37. Alcorta, R., Baguet, S., Prabel, B., et al.: Period doubling bifurcation analysis and isolated sub-harmonic resonances in an oscillator with asymmetric clearances. Nonlinear Dyn. 98, 2939–3960 (2019)

    MATH  Google Scholar 

  38. Detroux, T., Renson, L., Masset, L., et al.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Awrejcewicz, J.: Numerical investigations of the constant and periodic motions of the human vocal cords including stability and bifurcation phenomena. Dyn. Stab. Sys. 5(1), 11–28 (1990)

    MathSciNet  MATH  Google Scholar 

  40. Awrejcewicz, J.: Bifurcation portrait of the human vocal cord oscillations. J. Sound Vib. 136, 151–156 (1990)

    MathSciNet  MATH  Google Scholar 

  41. Seydel, R.: Practical Bifurcation and Stability Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  42. Lu, K., Jin, Y., Chen, Y., et al.: Stability analysis of reduced rotor pedestal looseness fault model. Nonlinear Dyn. 82(4), 1611–1622 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241(2), 223–233 (2001)

    Google Scholar 

  44. Villa, C., Sinou, J.J., Thouverez, F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. Numer. Simul. 13(4), 804–821 (2008)

    Google Scholar 

  45. Peletan, L., Baguet, S., Torkhani, M., et al.: A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics. Nonlinear Dyn. 72(3), 671–682 (2013)

    MathSciNet  Google Scholar 

  46. Guskov, M., Thouverez, F.: Harmonic balance-based approach for quasi-periodic motions and stability analysis. J. Vib. Acoust. 134(3), 031003 (2012)

    Google Scholar 

  47. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56, 149 (1989)

    MathSciNet  MATH  Google Scholar 

  48. Wright, S., Nocedal, J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  49. Biegler, L.T., Nocedal, J., Schmid, C., Ternet, D.: Numerical experience with a reduced Hessian method for large scale constrained optimization. Comput. Opt. Appl. 15(1), 45–67 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Habib, G., Detroux, T., Viguié, R., et al.: Nonlinear generalization of Den Hartog’s equal-peak method. Mech. Syst. Signal Process. 52, 17–28 (2015)

    Google Scholar 

  51. Detroux, T., Habib, G., Masset, L., et al.: Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber. Mech. Syst. Signal Process. 60, 799–809 (2015)

    Google Scholar 

Download references

Acknowledgements

The research reported here has received funding from the National Science Foundation of China under Grants (No. 11972082), the Beijing Municipal Science and Technology Project (Z181100004118002) and the Beijing Institute of Technology Research Fund Program for Young Scholars which are highly appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Zhao, Q. & Fang, D. The continuation and stability analysis methods for quasi-periodic solutions of nonlinear systems. Nonlinear Dyn 100, 1469–1496 (2020). https://doi.org/10.1007/s11071-020-05497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05497-7

Keywords

Navigation