Skip to main content
Log in

Investigation of Structural, Optical and Electrical Transport Properties of Yttrium Doped La0.7Ca0.3MnO3 Perovskites

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In the present study, bulk samples of yttrium doped La0.7−xYxCa0.3MnO3 (x = 0.3 and 0.4) are prepared through solid-state reaction route. The structural, optical and electrical transport properties have been explored through various analytical techniques. The x-ray diffraction (XRD) patterns affirm single phase and polycrystalline nature of the samples. Rietveld refinement analysis of the XRD data is used to determine the various structural parameters. It reveals that both the samples belong to orthorhombic crystal system with Pnma space group. Using Scherrer’s equation, a lower value of crystallite size is found in the higher concentration of yttrium doped sample. The band gap as determined from the UV–visible DRS data by employing the Tauc’s relation is found to enhance with the increase of yttrium concentration in La0.7Ca0.3MnO3. The low temperature resistivity measurements establish semiconducting nature of the samples over the temperature range of ~ 110–300 K. Moreover, the electrical resistivity data are interpreted within the variable range hopping (VRH) model to estimate the density of states at the Fermi level N(EF), mean hopping distance Rh(T) and hopping energy Eh(T). It is observed that the electrical quantities vary gradually with the change of Y content. The conduction mechanism in this system is governed in the framework of thermally activated small polaron hopping (SPH) model and accordingly various parameters namely Debye temperature (θD), activation energy (Ep) and optical phonon frequency (νph) are evaluated. The obtained results support a strong connection between structure and electrical behavior in our samples and can be elucidated on the basis of localization of charge carriers induced by the substituting ions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kimaru, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  Google Scholar 

  2. Saravanan, C., Thiyagarajan, R., Manikandan, K., Sathiskumar, M., Kanjariya, P.V., Bhalodia, J.A., Arumugam, S.: Effect of Cd doping on magnetocaloric effect and critical behavior analysis on perovskite Nd1−xCdxMnO3 (x = 0, 0.1, 0.2, 0.3, and 0.4) manganite polycrystals. J. Appl. Phys. 122, 245109 (2017)

    Article  Google Scholar 

  3. Viret, M., Ranno, L., Coey, J.M.D.: Magnetic localization in mixed valence manganites. Phys. Rev. B 55, 13 (1997)

    Article  Google Scholar 

  4. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: “ Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993)

    Article  Google Scholar 

  5. Uehara, M., Mori, S., Chen, C.H., Cheong, S.W.: Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999)

    Article  CAS  Google Scholar 

  6. Zener, C.: Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951)

    Article  CAS  Google Scholar 

  7. Dong, G., et al.: Polycrystalline La0.845Sr0.155MnO3: Agx ceramics (0 ≤ x ≤ 0.5) with room-temperature TCR and MR for improved uncooling photoelectric and magnetic devices. Ceram. Int. 45, 12162–12168 (2019)

    Article  CAS  Google Scholar 

  8. Belkahla, A., Cherif, K., Belmabrouk, H., Bajahzar, A., Dhahri, J., Hlil, E.K.: Influence of non-magnetic ion In3+ on the magneto-transport properties in La0.7Bi0.05Sr0.15Ca0.1Mn1−xInxO3 (0 ≤ x ≤ 0.3) perovskite. Solid State Commun. 294, 16–22 (2019)

    Article  CAS  Google Scholar 

  9. Millis, A.J., Littlewood, P.B., Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995)

    Article  CAS  Google Scholar 

  10. Banerjee, A., Pal, S., Chaudhuri, B.K.: Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite La0.5Pb0.5Mn1−xCrxO3. J. Chem. Phys. 115, 1550–1558 (2001)

    Article  CAS  Google Scholar 

  11. Pal, S., Banerjee, A., Rozenberg, E., Chaudhuri, B.K.: Polaron hopping conduction and thermoelectric power in LaMnO3+δ. J. Appl. Phys. 89, 4955–4961 (2001)

    Article  CAS  Google Scholar 

  12. Mandal, P., Choudhury, P., Bärner, K., von Helmolt, R., Jansen, A.G.M.: Magnetotransport properties of La2/3Sr1/3MnO3 thin film. J. Appl. Phys. 91, 5940–5944 (2002)

    Article  CAS  Google Scholar 

  13. Khan, W., Naqvi, A.H., Gupta, M., Hussain, S., Kumar, R.: Small polaron hopping conduction mechanism in Fe doped LaMnO3. J. Chem. Phys. 135, 054501 (2011)

    Article  Google Scholar 

  14. Tiwari, S., Phase, D.M., Choudhary, R.J., Mund, H.S., Ahuja, B.L.: Magnetic and electrical behavior of Al doped La0.7Ca0.3MnO3 manganites. J. Appl. Phys. 109, 033911 (2011)

    Article  Google Scholar 

  15. Jia, Y.X., Lu, L., Khazeni, K., Crespi, V.H., Zettl, A., Cohen, M.L.: Magnetotransport properties of La0.6Pb0.4MnO3−δ and Nd0.6(Sr0.7Pb0.3)0.4MnO3−δ single crystals. Phys. Rev. B 52, 9147–9150 (1995)

    Article  CAS  Google Scholar 

  16. Ravindranath, V., Rao, M.S.R., Rangaranjan, G., Lu, Y., Klein, J., Klingeler, R., Uhlenbruck, S., Buchner, B., Gross, R.: Magnetotransport studies and mechanism of Ho and Y doped La0.7Ca0.3MnO3. Phys. Rev. B 63, 184434 (2001)

    Article  Google Scholar 

  17. Banik, S., Das, K., Das, I.: Enhancement of the magnetoresistive property by introducing disorder in the (La1−xYx)0.7Ca0.3MnO3 compound. RSC Adv. 7, 16575–16580 (2017)

    Article  CAS  Google Scholar 

  18. Modi, A., Bhutt, M.A., Pandey, D.K.: Structural, magnetotransport and thermal properties of Sm substituted La0.7−xSmxBa0.3MnO3 (0 ≤ x≤0.2) manganites. J. Magn. Magn. Mater. 424, 459–466 (2016)

    Article  Google Scholar 

  19. Sha, H., Wu, X.S., Xu, Y.M., Hu, A., Jiang, S.S.: X-ray diffraction studies on yttrium-doped La0.67Ca0.33MnO3. J. Supercond. Inc. Novel Magn. 17, 2 (2004)

    Google Scholar 

  20. Alexander, L., Klug, H.P.: Determination of crystallite size with the x-ray spectrometer. J. Appl. Phys. 21(2), 137–142 (1950)

    Article  CAS  Google Scholar 

  21. Prabhu, Y.T., Rao, K.V., Sai Kumar, V.S., Kumari, B.S.: X-ray analysis by Williamson–Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4, 21–28 (2014)

    Article  CAS  Google Scholar 

  22. Thandavan, T.M.K., Gani, S.M.A., Wong, C.S., Nor, R.M.: Evaluation of Williamson–Hall strain and stress distribution in ZnO nanowires prepared using aliphatic alcohol. J. Nondestruct. Eval. 34, 1–9 (2015)

    Article  Google Scholar 

  23. Hernández, E., Sagredo, V., Delgado, G.E.: Synthesis and magnetic characterization of LaMnO3 nanoparticles. Rev. Mex. Fis. 61, 166–169 (2015)

    Google Scholar 

  24. Mcbride, K., Cook, J., Gray, S., Felton, S., Stella, L., Poulidi, D.: Evaluation of La1−xSrxMnO3 (0 ≤ x < 0.4) synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia. Cryst. Eng. Commun. 18, 407–416 (2016)

    Article  CAS  Google Scholar 

  25. Khirade, P.P., Birajdar, S.D., Raut, A.V., Jadhav, K.M.: Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol–gel auto combustion: Influence of iron on physical properties. Ceram. Int. 42, 12441–12451 (2016)

    Article  CAS  Google Scholar 

  26. Shaterian, M., Enhessari, M., Rabbani, D., Asghari, M., Salavati-Niasari, M.: Synthesis, characterization and photocatalytic activity of LaMnO3 nanoparticles. Appl. Surf. Sci. 318, 213–217 (2014)

    Article  CAS  Google Scholar 

  27. Patra, A.S., Gogoi, G., Sahu, R.K., Qureshi, M.: Modulating the electronic structure of lanthanum manganite by ruthenium doping for enhanced photocatalytic water oxidation. Phys. Chem. Chem. Phys. 19, 12167–12174 (2017)

    Article  CAS  Google Scholar 

  28. Hassanien, A.S., Akl, A.A.: Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  29. Zhang, Z., Sun, X., Dresselhaus, M.: Electronic transport properties of single-crystal bismuth nanowire arrays. Phys. Rev. B Condens. Matter Mater. Phys. 61, 4850–4861 (2000)

    Article  CAS  Google Scholar 

  30. Jung, W.: Transport and magnetic properties of (LaMn)1−γO3 oxides (γ ≤ 0.044). J. Mater. Sci. Lett. 19, 1653–1655 (2000)

    Article  CAS  Google Scholar 

  31. Mott, N.F., Davis, E.A.: Electronic processes in non-crystalline materials, 2nd edn, p. 382. Clarendon Press, Oxford (1979)

    Google Scholar 

  32. Banday, A., Murugavel, S.: Small polaron hopping conduction mechanism in LiFePO4 glass and crystal. J. Appl. Phys. 121, 4 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors M. Abushad is grateful to the Inter University Accelerator Centre (IUAC), New Delhi for the financial support in the form of project fellowship (UFR No. 62318). Authors are also thankful to Professor Shakeel Khan, Department of Applied Physics, AMU, Aligarh to provide the facility of low temperature resistivity measurements. Dr. Mohammad Jane Alam, Spectroscopy lab, Department of Physics, AMU is thankfully acknowledged for the optical characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasi Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M., Abushad, M., Husain, S. et al. Investigation of Structural, Optical and Electrical Transport Properties of Yttrium Doped La0.7Ca0.3MnO3 Perovskites. Electron. Mater. Lett. 16, 321–331 (2020). https://doi.org/10.1007/s13391-020-00216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00216-1

Keywords

Navigation