Skip to main content
Log in

Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Cobalt hydroxide has been emerging as a promising catalyst for the electrocatalytic oxidation reactions, including the oxygen evolution reaction (OER) and glucose oxidation reaction (GOR). Herein, we prepared cobalt hydroxide nanoparticles (CoHP) and cobalt hydroxide nanosheets (CoHS) on nickel foam. In the electrocatalytic OER, CoHS shows an overpotential of 306 mV at a current density of 10 mA·cm−2. This is enhanced as compared with that of CoHP (367 mV at 10 mA·cm−2). In addition, CoHS also exhibits an improved performance in the electrocatalytic GOR. The improved electrocatalytic performance of CoHS could be due to the higher ability of the two-dimensional nanosheets on CoHS in electron transfer. These results are useful for fabricating efficient catalysts for electrocatalytic oxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y, Xiao J, Lv Q, Wang S. Self—supported transition metal phosphide based electrodes as high—efficient water splitting cathodes. Frontiers of Chemical Science and Engineering, 2018, 12(3): 494–508

    Article  CAS  Google Scholar 

  2. Liu T, Xie L, Yang J, Kong R, Du G, Asiri A M, Sun X, Chen L. Self—standing CoP nanosheets array: A three—dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem, 2017, 4(8): 1840–1845

    Article  CAS  Google Scholar 

  3. Xiong X, Ji Y, Xie M, You C, Yang L, Liu Z, Asiri A M, Sun X. MnO2—CoP3 nanowires array: An efficient electrocatalyst for alkaline oxygen evolution reaction with enhanced activity. Electrochemistry Communications, 2018, 86: 161–165

    Article  CAS  Google Scholar 

  4. Li P, Zhao R, Chen H, Wang H, Wei P, Huang H, Liu Q, Li T, Shi X, Zhang Y, Liu M, Sun X. Recent advances in the development of water oxidation electrocatalysts at mild pH. Small, 2019, 15(13): 1805103

    Article  Google Scholar 

  5. Tang C, Zhang R, Lu W, He L, Jiang X, Asiri A M, Sun X. Fedoped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Advanced Materials, 2017, 29(2): 1602441

    Article  Google Scholar 

  6. Kang B K, Im S Y, Lee J, Kwag S H, Kwon S B, Tiruneh S N, Kim M J, Kim J H, Yang W S, Lim B, Yoon D H. In situ formation of MOF derived mesoporous Co3N/amorphous N—doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Research, 2019, 12(7): 1605–1611

    Article  CAS  Google Scholar 

  7. Wang X, Xiao H, Li A, Li Z, Liu S, Zhang Q, Gong Y, Zheng L, Zhu Y, Chen C, et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. Journal of the American Chemical Society, 2018, 140(45): 15336–15341

    Article  CAS  PubMed  Google Scholar 

  8. Deng W, Dai R, You C, Hu P, Sun X, Xiong X, Huang K, Huo F. In situ formation of a 3D amorphous cobalt-borate nanoarray: An efficient non—noble metal catalytic electrode for non—enzyme glucose detection. ChemistrySelect, 2018, 3(38): 10580–10584

    Article  CAS  Google Scholar 

  9. Yang L, Feng S, Xu G, Wei B, Zhang L. Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5462–5475

    Article  CAS  Google Scholar 

  10. Chen G, Zhang J, Wang F, Wang L, Liao Z, Zschech E, Mullen K, Feng X. Cobalt-based metal-organic framework nanoarrays as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(69): 18413–18418

    CAS  Google Scholar 

  11. Huang W, Cao Y, Chen Y, Peng J, Lai X, Tu J. Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor. Applied Surface Science, 2017, 396: 804–811

    Article  CAS  Google Scholar 

  12. Liardet L, Hu X. Amorphous cobalt vanadium oxide as a highly active electrocatalyst for oxygen evolution. ACS Catalysis, 2018, 8(1): 644–650

    Article  CAS  PubMed  Google Scholar 

  13. Feng S, Liu C, Chai Z, Li Q, Xu D. Cobalt—based hydroxide nanoparticles@N-doping carbonic frameworks core-shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Research, 2018, 11(3): 1482–1489

    Article  CAS  Google Scholar 

  14. Zhang X, Li J, Yang Y, Zhang S, Zhu H, Zhu X, Xing H, Zhang Y, Huang B, Guo S, Wang E. Co3O4/Fe0.33Co0.66P interface nanowire for enhancing water oxidation catalysis at high current density. Advanced Materials, 2018, 30(45): 1803551

    Article  Google Scholar 

  15. Yeo B S, Bell A T. Enhanced activity of gold—supported cobalt oxide for the electrochemical evolution of oxygen. Journal of the American Chemical Society, 2011, 133(14): 5587–5593

    Article  CAS  PubMed  Google Scholar 

  16. Menezes P W, Indra A, Gonzalez-Flores D, Sahraie N R, Zaharieva I, Schwarze M, Strasser P, Dau H, Driess M. High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: Morphology-dependent activity. ACS Catalysis, 2015, 5(4): 2017–2027

    Article  CAS  Google Scholar 

  17. Guo P, Wu J, Li X B, Luo J, Lau W M, Liu H, Sun X L, Liu L M. A highly stable bifunctional catalyst based on 3D Co (OH)2@NCNTs@NF towards overall water-splitting. Nano Energy, 2018, 47: 96–104

    Article  CAS  Google Scholar 

  18. Ye Z, Qin C, Ma G, Peng X, Li T, Li D, Jin Z. Cobalt-iron oxide nanoarrays supported on carbon fiber paper with high stability for electrochemical oxygen evolution at large current densities. ACS Applied Materials & Interfaces, 2018, 10(46): 39809–39818

    Article  CAS  Google Scholar 

  19. Kim B, Park I, Yoon G, Kim J S, Kim H, Kang K. Atomistic investigation of doping effects on electrocatalytic properties of cobalt oxides for water oxidation. Advancement of Science, 2018, 5(12): 1801632

    Google Scholar 

  20. Zhang R, Zhang Y C, Pan L, Shen G Q, Mahmood N, Ma Y H, Shi Y, Jia W, Wang L, Zhang X, Xu W, Zou J J. Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution. ACS Catalysis, 2018, 8(5): 3803–3811

    Article  Google Scholar 

  21. Tong M, Wang L, Yu P, Liu X, Fu H. 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Frontiers of Chemical Science and Engineering, 2018, 12(3): 417–424

    Article  CAS  Google Scholar 

  22. Ji X, Zhang R, Shi X, Asiri A M, Zheng B, Sun X. Fabrication of hierarchical CoP nanosheet@microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions. Nanoscale, 2018, 10(17): 7941–7945

    Article  CAS  PubMed  Google Scholar 

  23. Ding D, Shen K, Chen X, Chen H, Chen J, Fan T, Wu R, Li Y. Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR. ACS Catalysis, 2018, 8(9): 7879–7888

    Article  CAS  Google Scholar 

  24. Li M, Bai L, Wu S, Wen X, Guan J. Co/CoOx nanoparticles embedded on carbon for efficient catalysis of oxygen evolution and oxygen reduction reactions. ChemSusChem, 2018, 11(10): 1722–1727

    Article  CAS  PubMed  Google Scholar 

  25. Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri A M, Xiong X, Sun X. An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale, 2017, 9(43): 16612–16615

    Article  CAS  PubMed  Google Scholar 

  26. Gu W, Hu L, Zhu X, Shang C, Li J, Wang E. Rapid synthesis of Co3O4 nanosheet arrays on Ni foam by in situ electrochemical oxidization of air-plasma engraved Co(OH)2 for efficient oxygen evolution. Chemical Communications, 2018, 54(90): 12698–12701

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Liang Q, Yang P, Huang Y, Chen W, Deng X, Yang H, Yan J, Liu Y. Flower-like Co3O4 microstrips embedded in Co foam as a binder-free electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44(44): 24209–24217

    Article  CAS  Google Scholar 

  28. Li Y, Zhang L, Peng K. Synthesis of urchin-like Co3O4 spheres for application in oxygen evolution reaction. Nanotechnology, 2018, 29(48): 485403

    Article  PubMed  Google Scholar 

  29. Miao X, Zhou S, Wu L, Zhao J, Shi L. Spin-state transition enhanced oxygen evolving activity in misfit-layered cobalt oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12337–12342

    Article  CAS  Google Scholar 

  30. Li Y, Li F M, Meng X Y, Wu X R, Li S N, Chen Y. Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction. Nano Energy, 2018, 54: 238–250

    Article  CAS  Google Scholar 

  31. Chen L, Zhang Y, Wang H, Wang Y, Li D, Duan C. Cobalt layered double hydroxides derived CoP/Co2P hybrids for electrocatalytic overall water splitting. Nanoscale, 2018, 10(45): 21019–21024

    Article  CAS  PubMed  Google Scholar 

  32. Kou Y, Liu J, Li Y, Qu S, Ma C, Song Z, Han X, Deng Y, Hu W, Zhong C. Electrochemical oxidation of chlorine-doped Co(OH)2 nanosheet arrays on carbon cloth as a bifunctional oxygen electrode. ACS Applied Materials & Interfaces, 2018, 10(1): 796–805

    Article  CAS  Google Scholar 

  33. Luo Y, Li X, Cai X, Zou X, Kang F, Cheng H M, Liu B. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano, 2018, 12(5): 4565–4573

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, Xie L, Li D, Yang R, Jiang D, Chen M. Engineering Ni(OH)2 nanosheet on CoMoO4 nanoplate array as efficient electrocatalyst for oxygen evolution reaction. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16086–16095

    Article  CAS  Google Scholar 

  35. Chen H, Sun P, Qiu M, Jiang M, Zhao J, Han D, Niu L, Cui G. Co-Pdecorated nanoporous copper framework for high performance flexible non-enzymatic glucose sensors. Journal of Electroanalytical Chemistry, 2019, 841: 119–128

    Article  CAS  Google Scholar 

  36. Tao Y, Liu Q, Chang Q, Duan J, Tao Z, Guan H, Chen G, Mao Y, Xie J, Dong C. In situ fabrication of Co(OH)2 by hydrothermal treating Co foil in MOH (M = H, Li, Na, K) for non-enzymatic glucose detection. Journal of Alloys and Compounds, 2019, 781: 1033–1039

    Article  CAS  Google Scholar 

  37. Xie F, Cao X, Qu F, Asiri A M, Sun X. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators. B, Chemical, 2018, 255: 1254–1261

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the financial support from the National Natural Science Foundation of China (Grant Nos. 11761141006, 81822024 and 21605102) and the National Key Research and Development Program of China (Grant No. 2017YFC1200904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Song or Yun-Xiang Pan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, J., Qi, D., Song, J. et al. Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation. Front. Chem. Sci. Eng. 14, 948–955 (2020). https://doi.org/10.1007/s11705-020-1920-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1920-2

Keywords

Navigation