Skip to main content
Log in

Effect of propolis phenolic compounds on free fatty acid receptor 4 activation

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Propolis is known to have multiple biological and pharmacological properties including the regulation of energy homeostasis. Although phenolic compounds are considered to be the major active components in propolis, there is little information available about their mechanisms underlying the regulation of energy homeostasis. In this study, the effects of five phenolic compounds in propolis, chrysin, pinocembrin, galangin, pinobanksin, and caffeic acid phenethyl ester (CAPE) were evaluated on the activation of free fatty acid receptor 4 (FFA4), which are involved in the control of energy homeostasis by enhancing insulin signaling, increasing glucose uptake, and regulating adipogenesis. The results showed that three phenolic compounds exhibited the activation of FFA4, which were ranked in the order of pinocembrin, CAPE and pinobanksin in FFA4-expressing cells. These results suggest that some phenolic compounds in propolis, particularly pinocembrin, may affect the control of energy homeostasis via the activation of FFA4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol. Appl. Pharmacol. 279: 1-7 (2014)

    Article  CAS  Google Scholar 

  • Akyol S, Ozturk G, Ginis Z, Armutcu F, Yigitoglu MR. In vivo and in vitro antineoplastic actions of caffeic acid phenethyl ester (CAPE): therapeutic perspectives. Nutr. Cancer 65: 515-526 (2013)

    Article  CAS  Google Scholar 

  • Auguste S, Fisette A, Fernandes MF, Hryhorczuk C, Poitout V, Alquier T, Fulton S. Central agonism of GPR120 acutely inhibits food intake and food reward and chronically suppresses anxiety-like behavior in mice. Int. J. Neuropsychopharmacol. 19: 1-10 (2016)

    Article  CAS  Google Scholar 

  • Burdock G. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 36: 347-363 (1998)

    Article  CAS  Google Scholar 

  • Celik S, Erdogan S, Tuzcu M. Caffeic acid phenethyl ester (CAPE) exhibits significant potential as an antidiabetic and liver-protective agent in streptozotocin-induced diabetic rats. Pharmacol. Res. 60: 270-276 (2009).

    Article  CAS  Google Scholar 

  • Choi MJ, Lee EJ, Park JS, Kim SN, Park EM, Kim HS. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: Critical role of PPAR-γ signaling pathway. Biochem. Pharmacol. 144: 120-131 (2017)

    Article  CAS  Google Scholar 

  • Depoortere I. Taste receptors in the gut tune the release of peptides in response to nutrients. Peptides 66: 9-12 (2015)

    Article  CAS  Google Scholar 

  • Fuliang HU, Hepburn HR, Xuan H, Chen M, Daya S, Radloff SE. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol. Res. 51: 147-152 (2005)

    Article  CAS  Google Scholar 

  • Giri SS, Sen SS, Sukumaran V, Park SC. Pinocembrin attenuates lipopolysaccharide-induced inflammatory responses in Labeo rohita macrophages via the suppression of the NF-κB signalling pathway. Fish Shellfish Immunol. 56: 459-466 (2016)

    Article  CAS  Google Scholar 

  • Granados-Pineda J, Uribe-Uribe N, García-López P, Ramos-Godinez M, Rivero-Cruz J, Pérez-Rojas J. Effect of Pinocembrin Isolated from Mexican Brown Propolis on Diabetic Nephropathy. Molecules 23: 852 (2018)

    Article  Google Scholar 

  • Hara T, Kashihara D, Ichimura A, Kimura I, Tsujimoto G, Hirasawa A. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim Biophys Acta Mol. Cell Biol. Lipids 1841: 1292-1300 (2014)

  • Hassan NA, El-Bassossy HM, Mahmoud MF, Fahmy A. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness. Chem-Biol. Interact. 213: 28-36 (2014)

    Article  CAS  Google Scholar 

  • Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molecules 19: 19610-19632 (2014)

    Article  Google Scholar 

  • Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol. Aspects Med. 64: 92-108 (2018).

    Article  CAS  Google Scholar 

  • Kasiotis KM, Anastasiadou P, Papadopoulos A, Machera K. Revisiting Greek propolis: chromatographic analysis and antioxidant activity study. PloS One 12: e0170077 (2017)

    Article  Google Scholar 

  • Kim K, Park M, Lee YM, Rhyu MR, Kim HY. Ginsenoside metabolite compound K stimulates glucagon-like peptide-1 secretion in NCI-H716 cells via bile acid receptor activation. Arch. Pharmacal. Res. 37: 1193-1200 (2014)

    Article  CAS  Google Scholar 

  • Kitamura H, Naoe Y, Kimura S, Miyamoto T, Okamoto S, Toda C, Shimamoto Y, Iwanaga T, Miyoshi I. Beneficial effects of Brazilian propolis on type 2 diabetes in ob/ob mice: Possible involvement of immune cells in mesenteric adipose tissue. Adipocyte 2: 227-236 (2013)

    Article  CAS  Google Scholar 

  • Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm. Biol. 51: 607-613 (2013)

    Article  CAS  Google Scholar 

  • Lee JY, Park W. Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Biotechnol. Bioprocess Eng. 20: 1026-1034 (2015)

  • Li H, Wu F, Tan J, Wang, K, Zhang C, Zheng H, Hu F. Caffeic acid phenethyl ester exhibiting distinctive binding interaction with human serum albumin implies the pharmacokinetic basis of propolis bioactive compounds. J. Pharm. Biomed. Anal. 122: 21-28 (2016)

    Article  CAS  Google Scholar 

  • Liu HD, Wang WB, Xu ZG, Liu CH, He DF, Du LP, Li MY, Yu X, Sun JP. FFA4 receptor (GPR120): A hot target for the development of anti-diabetic therapies. Eur. J. Pharmacol. 763: 160-168 (2015)

    Article  CAS  Google Scholar 

  • Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 145: 187-196 (2018)

    Article  CAS  Google Scholar 

  • Moniri NH. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochem. Pharmacol. 110: 1-15 (2016)

    Article  Google Scholar 

  • Nakajima M, Arimatsu K, Minagawa T, Matsuda Y, Sato K, Takahashi N, Nakajima T, Yamazaki K. Brazilian propolis mitigates impaired glucose and lipid metabolism in experimental periodontitis in mice. BMC Complementary Altern. Med. 16: 329 (2016)

    Article  Google Scholar 

  • Nakajima S, Hira T, Yahagi A, Nishiyama C, Yamashita T, Imagi J, Hara H. Unsaturated aldehydes induce CCK secretion via TRPA1 in STC‐1 cells. Mol. Nutr. Food Res. 58: 1042-1051 (2014).

    Article  CAS  Google Scholar 

  • Pei B, Sun J. Pinocembrin alleviates cognition deficits by inhibiting inflammation in diabetic mice. J. Neuroimmunol. 314: 42-49 (2018)

    Article  CAS  Google Scholar 

  • Sang H, Yuan N, Yao S, Li F, Wang J, Fang Y, Qin S. Inhibitory effect of the combination therapy of simvastatin and pinocembrin on atherosclerosis in apoE-deficient mice. Lipids Health Dis. 11: 166 (2012)

    Article  CAS  Google Scholar 

  • Sivakumar AS, Viswanathan P, Anuradha CV. Dose-dependent effect of galangin on fructose-mediated insulin resistance and oxidative events in rat kidney. Redox Rep. 15: 224-232 (2010)

    Article  CAS  Google Scholar 

  • Zhou LT, Wang KJ, Li L, Li H, Geng M. Pinocembrin inhibits lipopolysaccharide-induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF-κB pathway. Eur. J. Pharmacol. 761: 211-216 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from Small Grant for Exploratory Research of Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2016R1D1A1A02937328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Young Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Kim, K., Kim, N. et al. Effect of propolis phenolic compounds on free fatty acid receptor 4 activation. Food Sci Biotechnol 29, 579–584 (2020). https://doi.org/10.1007/s10068-019-00688-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-019-00688-4

Keywords

Navigation