Skip to main content
Log in

Histogram Equalization Variants as Optimization Problems: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In the consumer electronics field, the main challenge in image processing is to preserve the original brightness. Histogram Equalization (HE) is one of the simplest and widely used methods for contrast enhancement. However, HE does not suit into the consumer electronics field as this procedure flattens the histogram by distributing the entire gray levels uniformly. Therefore, several HE variants have been proposed based on proper histogram segmentation, histogram weighting, and range optimization techniques to overcome this flattening effect. However, sometimes these modifications become complex and computationally expensive. Recently, researchers have formulated the HE variants for image enhancement as optimization problems and solved, using Nature-Inspired Optimization Algorithms (NIOA), which starts a new era in the image enhancement field. This study presents an up-to-date review over the application of NIOAs for HE variants in image enhancement domain. The main issues which are involved in the application of NIOAs with HE are also discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, New York

    Google Scholar 

  2. Chen SD, Ramli AR (2004) Preserving brightness in histogram equalization based contrast enhancement techniques. Digit Signal Process 14(5):413–428

    Google Scholar 

  3. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Google Scholar 

  4. Chen SD, Ramli AR (2003) Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron 49(4):1301–1309

    Google Scholar 

  5. Wang Q, Ward RK (2007) Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans Consum Electron 53(2):757–764

    Google Scholar 

  6. Zuo C, Chen Q, Sui X (2013) Range limited bi-histogram equalization for image contrast enhancement. Optik Int J Light Electron Opt 124(5):425–431

    Google Scholar 

  7. Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75

    Google Scholar 

  8. Chen SD, Ramli AR (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49(4):1310–1319

    Google Scholar 

  9. Cheng HD, Shi XJ (2004) A simple and effective histogram equalization approach to image enhancement. Digit Signal Process 14(2):158–170

    Google Scholar 

  10. Sim KS, Tso CP, Tan YY (2007) Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognit Lett 28(10):1209–1221

    Google Scholar 

  11. Wongsritong K, Kittayaruasiriwat K, Cheevasuvit F, Dejhan K, Somboonkaew A (1998) Contrast enhancement using multipeak histogram equalization with brightness preserving. In: The 1998 IEEE Asia-Pacific conference on circuits and systems. IEEE APCCAS 1998. IEEE, pp. 455–458

  12. Abdullah-Al-Wadud M, Kabir MH, Dewan MAA, Chae O (2007) A dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(2):593–600

    Google Scholar 

  13. Ibrahim H, Kong NSP (2007) Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans Consum Electron 53(4):1752–1758

    Google Scholar 

  14. Menotti D, Najman L, Facon J, Araújo ADA (2007) Multi-histogram equalization methods for contrast enhancement and brightness preserving. IEEE Trans Consum Electron 53(3):1186–1194

    Google Scholar 

  15. Sheet D, Garud H, Suveer A, Mahadevappa M, Chatterjee J (2010) Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans Consum Electron 56(4):2475–2480

    Google Scholar 

  16. Park GH, Cho HH, Choi MR (2008) A contrast enhancement method using dynamic range separate histogram equalization. IEEE Trans Consum Electron 54(4):1981–1987

    Google Scholar 

  17. Kim T, Paik J (2008) Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Trans Consum Electron 54(4):1803–1810

    Google Scholar 

  18. Sengee N, Choi HK (2008) Brightness preserving weight clustering histogram equalization. IEEE Trans Consum Electron 54(3):1329–1337

    Google Scholar 

  19. Kim M, Chung MG (2008) Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans Consum Electron 54(3):1389–1397

    Google Scholar 

  20. Shanmugavadivu P, Balasubramanian K, Muruganandam A (2014) Particle swarm optimized bi-histogram equalization for contrast enhancement and brightness preservation of images. Vis Comput 30(4):387–399

    Google Scholar 

  21. Zhou S, Zhang F, Siddique MA (2015) Range limited peak-separate fuzzy histogram equalization for image contrast enhancement. Multimed Tools Appl 74(17):6827–6847

    Google Scholar 

  22. Kong NSP, Ibrahim H, Hoo SC (2013) A literature review on histogram equalization and its variations for digital image enhancement. Int J Innov Manag Technol 4(4):386

    Google Scholar 

  23. Dhal KG, Das S (2017) Combination of histogram segmentation and modification to preserve the original brightness of the images. Pattern Recognit Image Anal 27(2):200–212

    Google Scholar 

  24. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    MathSciNet  Google Scholar 

  25. Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29(3):273–285

    Google Scholar 

  26. Dhal KGG, Sen M, Das S (2018) Multi-thresholding of histopathological images using fuzzy entropy and parameterless cuckoo search. In: Shi Y (ed) Critical developments and applications of swarm intelligence. IGI Global, Hershey, pp 339–356

    Google Scholar 

  27. Hinojosa S, Dhal KG, Elaziz MA, Oliva D, Cuevas E (2018) Entropy-based imagery segmentation for breast histology using the stochastic fractal search. Neurocomputing 321:201–215

    Google Scholar 

  28. Dhal KG, Sen M, Das S (2018) Cuckoo search-based modified bi-histogram equalisation method to enhance the cancerous tissues in mammography images. Int J Med Eng Inform 10(2):164–187

    Google Scholar 

  29. Ooi CH, Kong NSP, Ibrahim H (2009) Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans Consum Electron 55(4):2072–2080

    Google Scholar 

  30. Kong NSP, Ibrahim H, Ooi CH, Chieh DCJ (2009) Enhancement of microscopic images using modified self-adaptive plateau histogram equalization. In: International conference on computer technology and development, 2009. ICCTD’09, vol 2. IEEE, pp 308–310

  31. Dhal KG, Sen M, Ray S, Das S (2018) Multi-thresholded histogram equalization based on parameterless artificial bee colony. In: Khosrow-Pour M (ed) Incorporating nature-inspired paradigms in computational applications. IGI Global, Hershey, pp 108–126

    Google Scholar 

  32. Dhal KG, Das A, Ghoshal N, Das S (2018) Variance based brightness preserving dynamic histogram equalization for image contrast enhancement. Pattern Recognit Image Anal 28(4):642–652

    Google Scholar 

  33. Dhal KG, Das S (2018) Hue preserving colour image enhancement models in RGB colour space without gamut problem. Int J Signal Imaging Syst Eng 11(2):102–116

    Google Scholar 

  34. Dhal KG, Das S (2018) Colour retinal images enhancement using modified histogram equalisation methods and firefly algorithm. Int J Biomed Eng Technol 28(2):160–184

    Google Scholar 

  35. Dhal KG, Sen S, Sarkar K, Das S (2016) Entropy based range optimized brightness preserved histogram-equalization for image contrast enhancement. Int J Comput Vis Image Process (IJCVIP) 6(1):59–72

    Google Scholar 

  36. Fister Jr I, Yang XS, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186

  37. Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press, Beckington

    Google Scholar 

  38. Yang XS, He X (2016) Nature-inspired optimization algorithms in engineering: overview and applications. In: Yang XS (ed) Nature-inspired computation in engineering. Springer, Berlin, pp 1–20

    Google Scholar 

  39. Maniezzo ACMDV (1992) Distributed optimization by ant colonies. In: Toward a practice of autonomous systems: proceedings of the First European conference on artificial life. Mit Press, p 134

  40. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    MathSciNet  MATH  Google Scholar 

  41. Chen TC, Tsai PW, Chu SC, Pan JS (2007) A novel optimization approach: bacterial-GA foraging. In: Second international conference on innovative computing, information and control, 2007. ICICIC’07. IEEE, p. 391

  42. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Alejandro Pelta D, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 65–74

    Google Scholar 

  43. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2011) The bees algorithm-a novel tool for complex optimisation. In: Intelligent production machines and systems-2nd I* PROMS virtual international conference (3–14 July 2006)

  44. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In:. World congress on nature and biologically inspired computing, 2009. NaBIC 2009. IEEE, pp 210–214

  45. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio Inspired Comput 2(2):78–84

    Google Scholar 

  46. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  47. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95. IEEE, pp 39–43

  48. Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12(6):702–713

    Google Scholar 

  49. Candida Ferreira (2001) Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027

  50. Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129(3):210–225

    Google Scholar 

  51. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Google Scholar 

  52. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Google Scholar 

  53. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226

    MathSciNet  Google Scholar 

  54. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    MathSciNet  MATH  Google Scholar 

  55. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE congress on evolutionary computation. CEC 2007. IEEE, pp 4661–4667

  56. Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206

    MATH  Google Scholar 

  57. Glover F (1990) Tabu search—part II. ORSA J Comput 2(1):4–32

    MATH  Google Scholar 

  58. Price KV (1999) An introduction to differential evolution. New ideas in optimization. McGraw-Hill Ltd., London, pp 79–108

    Google Scholar 

  59. Price KV, Storn RM, Lampinen JA (2005) Differential evolution a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  60. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  MATH  Google Scholar 

  61. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Google Scholar 

  62. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. MIT Press, Cambridge

    Google Scholar 

  63. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  64. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073

    MathSciNet  Google Scholar 

  65. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Google Scholar 

  66. Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36

    Google Scholar 

  67. Li MD, Zhao H, Weng XW, Han T (2016) A novel nature-inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–68

    Google Scholar 

  68. Punnathanam V, Kotecha P (2016) Yin-Yang-pair optimization: a novel lightweight optimization algorithm. Eng Appl Artif Intell 54:62–79

    Google Scholar 

  69. Ebrahimi A, Khamehchi E (2016) Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems. J Nat Gas Sci Eng 29:211–222

    Google Scholar 

  70. Savsani P, Savsani V (2016) Passing vehicle search (PVS): a novel metaheuristic algorithm. Appl Math Model 40(5):3951–3978

    MATH  Google Scholar 

  71. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Google Scholar 

  72. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  73. Kaboli SHA, Selvaraj J, Rahim NA (2017) Rain-fall optimization algorithm: a population based algorithm for solving constrained optimization problems. J Comput Sci 19:31–42

    Google Scholar 

  74. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84

    Google Scholar 

  75. Yang XS (2018) Mathematical analysis of nature-inspired algorithms. In: Yang XS (ed) Nature-inspired algorithms and applied optimization. Springer, Cham, pp 1–25

    Google Scholar 

  76. Brownlee J (2011) Clever algorithms: nature-inspired programming recipes. Jason Brownlee, Melbourne

    Google Scholar 

  77. Fister Jr. I (2013) A comprehensive review of bat algorithms and their hybridization. Masters Thesis. University of Maribor, Slovenia

  78. Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NPCompleteness. W.H. Freeman & Co., New York

    MATH  Google Scholar 

  79. Martin D, Del Toro R, Haber R, Dorronsoro J (2009) Optimal tuning of a networked linear controller using a multi-objective genetic algorithm and its application to one complex electromechanical process. Int J Innov Comput Inf Control 5(10):3405–3414

    Google Scholar 

  80. David RC, Precup RE, Petriu EM, Rădac MB, Preitl S (2013) Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Inf Sci 247:154–173

    MathSciNet  MATH  Google Scholar 

  81. Luo B, Liu D, Huang T, Yang X, Ma H (2017) Multi-step heuristic dynamic programming for optimal control of nonlinear discrete-time systems. Inf Sci 411:66–83

    MATH  Google Scholar 

  82. Vrkalovic S, Lunca EC, Borlea ID (2018) Model-free sliding mode and fuzzy controllers for reverse osmosis desalination plants. Int J Artif Intell 16(2):208–222

    Google Scholar 

  83. Kwok NM, Wang D, Ha QP, Fang G, Chen SY (2013) Locally-equalized image contrast enhancement using PSO-tuned sectorized equalization. In: Chatterjee A, Siarry P (eds) Computational intelligence in image processing. Springer, Berlin, pp 21–36

    Google Scholar 

  84. Mohan S, Mahesh TR (2013) Particle swarm optimization based contrast limited enhancement for mammogram images. In: 2013 7th international conference on intelligent systems and control (ISCO). IEEE, pp 384–388

  85. Shanmugavadivu P, Balasubramanian K, Somasundaram K (2011) Modified histogram equalization for image contrast enhancement using particle swarm optimization. Int J Comput Sci Eng IT 1(5):13–27

    Google Scholar 

  86. Dhal KG, Das S (2015) Diversity conserved chaotic artificial bee colony algorithm based brightness preserved histogram equalization and contrast stretching method. Int J Nat Comput Res (IJNCR) 5(4):45–73

    Google Scholar 

  87. Shanmugavadivu P, Balasubramanian K (2014) Thresholded and optimized histogram equalization for contrast enhancement of images. Comput Electr Eng 40(3):757–768

    Google Scholar 

  88. Dhal KG, Das S (2017) Cuckoo search with search strategies and proper objective function for brightness preserving image enhancement. Pattern Recognit Image Anal 27(4):695–712

    Google Scholar 

  89. Dhal KG, Das S (2018) A dynamically adapted and weighted Bat algorithm in image enhancement domain. Evol Syst. https://doi.org/10.1007/s12530-018-9216-1

    Article  MATH  Google Scholar 

  90. Tuba M, Jordanski M, Arsic A (2017) Improved weighted thresholded histogram equalization algorithm for digital image contrast enhancement using the bat algorithm. In: Yang XS, Papa JP (eds) Bio-inspired computation and applications in image processing. Academic Press, Cambridge, pp 61–86

    Google Scholar 

  91. Dhal KG, Das S (2017) Local search based dynamically adapted Bat Algorithm in image enhancement domain. Int J Comput Sci Math (InderScience) 11:1–28

    MathSciNet  MATH  Google Scholar 

  92. Singh H, Kumar A, Balyan LK, Singh GK (2018) Swarm intelligence optimized piecewise gamma corrected histogram equalization for dark image enhancement. Comput Electr Eng 70:462–475

    Google Scholar 

  93. Wan M, Gu G, Qian W, Ren K, Chen Q, Maldague X (2018) Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement. Infrared Phys Technol 91:164–181

    Google Scholar 

  94. Wan M, Gu G, Qian W, Ren K, Chen Q, Maldague X (2018) Infrared image enhancement using adaptive histogram partition and brightness correction. Remote Sens 10(5):682

    Google Scholar 

  95. Babu P, Rajamani V, Balasubramanian K (2015) Multipeak mean based optimized histogram modification framework using swarm intelligence for image contrast enhancement. Math Probl Eng. https://doi.org/10.1155/2015/265723

    Article  Google Scholar 

  96. Babu P, Rajamani V (2015) Contrast enhancement using real coded genetic algorithm based modified histogram equalization for gray scale images. Int J Imaging Syst Technol 25(1):24–32

    Google Scholar 

  97. Masra SMW, Pang PK, Muhammad MS, Kipli K (2012) Application of particle swarm optimization in histogram equalization for image enhancement. In 2012 IEEE colloquium on humanities, science and engineering (CHUSER). IEEE. pp 294–299

  98. Dhal KG, Quraishi MI, Das S (2017) An improved cuckoo search based optimal ranged brightness preserved histogram equalization and contrast stretching method. Int J Swarm Intell Res (IJSIR) 8(1):1–29

    Google Scholar 

  99. Shanmugavadivu P, Balasubramanian K (2014) Particle swarm optimized multi-objective histogram equalization for image enhancement. Opt Laser Technol 57:243–251

    Google Scholar 

  100. Kwok Ngai M, Ha QP, Liu D, Fang G (2009) Contrast enhancement and intensity preservation for gray-level images using multi-objective particle swarm optimization. IEEE Trans Autom Sci Eng 6:145–155

    Google Scholar 

  101. Pal SK, Bhandari D, Kundu MK (1994) Genetic algorithms for optimal image enhancement. Pattern Recognit Lett 15(3):261–271

    MATH  Google Scholar 

  102. Shyu MS, Leou JJ (1998) A genetic algorithm approach to colour image enhancement. Pattern Recognit 31(7):871–880

    Google Scholar 

  103. Suresh S, Lal S (2017) Modified differential evolution algorithm for contrast and brightness enhancement of satellite images. Appl Soft Comput 61:622–641

    Google Scholar 

  104. Joshi P, Prakash S (2015) An efficient technique for image contrast enhancement using artificial bee colony. In: 2015 IEEE international conference on identity, security and behavior analysis (ISBA). IEEE, pp 1–6

  105. Chen J, Yu W, Tian J, Chen L, Zhou Z (2017) Image contrast enhancement using an artificial bee colony algorithm. Swarm Evol Comput 38:287–294

    Google Scholar 

  106. Hoseini P, Shayesteh MG (2013) Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. Digit Signal Process 23(3):879–893

    MathSciNet  Google Scholar 

  107. Verma OP, Chopra RR, Gupta A (2016) An adaptive bacterial foraging algorithm for colour image enhancement. In: 2016 annual conference on information science and systems (CISS), IEEE, pp 1–6

  108. Hanmandlu M, Verma OP, Kumar NK, Kulkarni M (2009) A novel optimal fuzzy system for colour image enhancement using bacterial foraging. IEEE Trans Instrum Meas 58(8):2867–2879

    Google Scholar 

  109. Saini MK, Narang D (2013) Cuckoo optimization algorithm based image enhancement. In: Proceedings of the of international conference on advances in signal processing and communication. Elsevier

  110. Hanmadlu M, Arora S, Gupta G, Singh L (2013) A novel optimal fuzzy colour image enhancement using particle swarm optimization. In: 2013 sixth international conference on contemporary computing (IC3). IEEE, pp41–46

  111. Sharma N, Verma OP (2017) Estimation of weighting distribution using fuzzy memberships and wavelet transformation with PSO optimization in satellite image enhancement. Cogent Eng 4(1):1392835

    Google Scholar 

  112. Sharma A, Kapur RK (2016) Image enhancement using hybrid GSA—particle swarm optimization. In: Contemporary computing and informatics

  113. Gao C, Panetta K, Agaian S (2013) No reference colour image quality measures. In: 2013 International conference on cybernetics, pp 243–248

  114. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Google Scholar 

  115. Eskicioglu AM, Fisher PS (1995) Image quality measures and their performance. IEEE Trans Commun 43(12):2959–2965

    Google Scholar 

  116. Xue W, Zhang L, Mou X, Bovik AC (2013) Gradient magnitude similarity deviation: an highly efficient perceptual image quality index. IEEE Trans Image Process 23:1–12

    MathSciNet  MATH  Google Scholar 

  117. Aja-Fernández S, San José Estépar R, Alberola-López C, Westin CF (2006) Image quality assessment based on local variance. In: EMBC 2006, New York

  118. Wang Z, Bovi AC (2002) A universal image quality index. IEEE Signal Process Lett 9:81–84

    Google Scholar 

  119. Hore A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In: 2010 20th international conference on pattern recognition (icpr). IEEE, pp 2366–2369

  120. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    MathSciNet  MATH  Google Scholar 

  121. Sampat MP, Wang Z, Gupta S, Bovik AC, Markey MK (2009) Complex wavelet structural similarity: a new image similarity index. IEEE Trans Image Process 18(11):2385–2401

    MathSciNet  MATH  Google Scholar 

  122. Wang Z, Li Q (2011) Information content weighting for perceptual image quality assessment. IEEE Trans Image Process 20(5):1185–1198

    MathSciNet  MATH  Google Scholar 

  123. Damera-Venkata N, Kite TD, Geisler WS, Evans BL, Bovik AC (2000) Image quality assessment based on a degradation model. IEEE Trans Image Process 9(4):636–650

    Google Scholar 

  124. Chandler DM, Hemami SS (2007) VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans Image Process 16(9):2284–2298

    MathSciNet  Google Scholar 

  125. Sheikh HR, Bovik AC, De Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(12):2117–2128

    Google Scholar 

  126. Sheikh HR, Bovik AC (2005) A visual information fidelity approach to video quality assessment. In: The first international workshop on video processing and quality metrics for consumer electronics, vol 7

  127. Kong NSP, Ibrahim H (2008) Colour image enhancement using brightness preserving dynamic histogram equalization. IEEE Trans Consum Electron 54:1962–1968

    Google Scholar 

  128. Panetta K, Gao C, Agaian S (2013) No reference colour image contrast and quality measures. IEEE Trans Consum Electron 59:643–651

    Google Scholar 

  129. Gupta P, Srivastava P, Bhardwaj S, Bhateja V (2011) A modified PSNR metric based on HVS for quality assessment of colour images. In: 2011 International conference on communication and industrial application (ICCIA), pp 1–4

  130. Ponomarenko N, Silvestri F, Egiazarian K, Carli M, Astola J, Lukin V (2007) On between-coefficient contrast masking of DCT basis functions. In: CD-ROM Proceedings of the third international workshop on video processing and quality metrics, USA

Download references

Funding

There is no funding associated with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Gopal Dhal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhal, K.G., Das, A., Ray, S. et al. Histogram Equalization Variants as Optimization Problems: A Review. Arch Computat Methods Eng 28, 1471–1496 (2021). https://doi.org/10.1007/s11831-020-09425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09425-1

Navigation