Skip to main content
Log in

Design Optimization of Heat Exchangers with Advanced Optimization Techniques: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This literature review presents the extensive literature survey of various heat exchangers (HEs) for the design optimization using advanced optimization techniques concerning with various aspects. The chief objective of this work is to focus on the parametric design optimization of different types of HEs using advanced optimization algorithms and therefore only the research works associated with advanced optimization techniques are considered. This is the first paper which exclusively summaries the research works concerning with the parameter optimization of HEs using advanced optimization techniques. Various types of HEs considered in this review paper are shell-and-tube HEs, plate-fin HEs, fin-tube HEs and various configurations of HE networks etc. The parametric design optimization of HEs is associated with number of structural and physical parameters having highly complexity. Trial and error method is used in the general design approaches and this becomes tediously and time consuming and not having the guarantee of getting an optimum design. Therefore, for the design of HEs advanced optimization techniques are preferred. The review work on parametric design optimization was not attempted previously by taking into consideration various types of HEs therefore this review paper may turn into the complete information at one place and it may be very useful to the industrial design and successive researchers to choose the direction of their research work in the field of parameter optimization of HEs using advanced optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Xie GN, Sunden B, Wang QW (2008) Optimization of compact heat exchangers by a genetic algorithm. Appl Therm Eng 28:895–906. https://doi.org/10.1016/j.applthermaleng.2007.07.008

    Article  Google Scholar 

  2. Mishra M, Das PK, Sarangi S (2009) Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm. Appl Therm Eng 29:2983–2989. https://doi.org/10.1016/j.applthermaleng.2009.03.009

    Article  Google Scholar 

  3. Sanaye S, Hajabdollahi H (2010) Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Appl Energy 87:1893–1902. https://doi.org/10.1016/j.apenergy.2009.11.016

    Article  Google Scholar 

  4. Rao RV, Patel VK (2010) Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. Int J Therm Sci 49:1712–1721. https://doi.org/10.1016/j.ijthermalsci.2010.04.001

    Article  Google Scholar 

  5. Najafi H, Najafi B, Hoseinpoori P (2011) Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm. Appl Therm Eng 31:1839–1847. https://doi.org/10.1016/j.applthermaleng.2011.02.031

    Article  Google Scholar 

  6. Hajabdollahi H, Ahmadi P, Dincer I (2011) Multi-objective optimization of plain fin-and-tube heat exchanger using evolutionary algorithm. J Thermophys Heat Transf 25:424–431. https://doi.org/10.2514/1.49976

    Article  Google Scholar 

  7. Yousefi M, Enayatifar R, Darus AN (2012) Optimal design of plate-fin heat exchangers by a hybrid evolutionary algorithm. Int Commun Heat Mass Transf 39:258–263. https://doi.org/10.1016/j.icheatmasstransfer.2011.11.011

    Article  Google Scholar 

  8. Yousefi M, Enayatifar R, Darus AN, Abdullah AH (2012) A robust learning based evolutionary approach for thermal-economic optimization of compact heat exchangers. Int Commun Heat Mass Transf 39:1605–1615. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.002

    Article  Google Scholar 

  9. Yousefi M, Darus AN, Mohammadi H (2012) An imperialist competitive algorithm for optimal design of plate-fin heat exchangers. Int J Heat Mass Transf 55:3178–3185. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.041

    Article  Google Scholar 

  10. Zhao M, Li Y (2013) An effective layer pattern optimization model for multi-stream plate-fin heat exchanger using genetic algorithm. Int J Heat Mass Transf 60:480–489. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.041

    Article  Google Scholar 

  11. Yousefi M, Enayatifar R, Darus AN, Abdullah AH (2013) Optimization of plate-fin heat exchangers by an improved harmony search algorithm. Appl Therm Eng 50:877–885. https://doi.org/10.1016/j.applthermaleng.2012.05.038

    Article  Google Scholar 

  12. Rao RV, Patel V (2013) Multi-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithm. Appl Math Model 37:1147–1162. https://doi.org/10.1016/j.apm.2012.03.043

    Article  MathSciNet  MATH  Google Scholar 

  13. Zarea H, Moradi Kashkooli F, Mansuri Mehryan A et al (2014) Optimal design of plate-fin heat exchangers by a Bees algorithm. Appl Therm Eng 69:267–277. https://doi.org/10.1016/j.applthermaleng.2013.11.042

    Article  Google Scholar 

  14. Guo D, Liu M, Xie L, Wang J (2014) Optimization in plate-fin safety structure of heat exchanger using genetic and Monte Carlo algorithm. Appl Therm Eng 70:341–349. https://doi.org/10.1016/j.applthermaleng.2014.04.056

    Article  Google Scholar 

  15. Guo K, Zhang N, Smith R (2015) Optimisation of fin selection and thermal design of counter-current plate-fin heat exchangers. Appl Therm Eng 78:491–499. https://doi.org/10.1016/j.applthermaleng.2014.11.071

    Article  Google Scholar 

  16. Hajabdollahi H (2015) Investigating the effect of non-similar fins in thermoeconomic optimization of plate fin heat exchanger. Appl Therm Eng 82:152–161. https://doi.org/10.1016/j.applthermaleng.2014.12.077

    Article  Google Scholar 

  17. Hadidi A (2015) A robust approach for optimal design of plate fin heat exchangers using biogeography based optimization (BBO) algorithm. Appl Energy 150:196–210. https://doi.org/10.1016/j.apenergy.2015.04.024

    Article  Google Scholar 

  18. Wang Z, Li Y (2015) Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm. Energy Convers Manag 101:126–135. https://doi.org/10.1016/j.enconman.2015.05.009

    Article  Google Scholar 

  19. Yousefi M, Darus AN, Yousefi M, Hooshyar D (2015) Multi-stage thermal-economical optimization of compact heat exchangers: a new evolutionary-based design approach for real-world problems. Appl Therm Eng 83:71–80. https://doi.org/10.1016/j.applthermaleng.2015.03.011

    Article  Google Scholar 

  20. Wang Z, Li Y (2016) Layer pattern thermal design and optimization for multistream plate-fin heat exchangers: a review. Renew Sustain Energy Rev 53:500–514. https://doi.org/10.1016/j.rser.2015.09.003

    Article  Google Scholar 

  21. Wang Z, Li Y (2016) A combined method for surface selection and layer pattern optimization of a multistream plate-fin heat exchanger. Appl Energy 165:815–827. https://doi.org/10.1016/j.apenergy.2015.12.118

    Article  Google Scholar 

  22. Zhang C, Cui G, Peng F (2016) A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis. Appl Therm Eng 104:707–719. https://doi.org/10.1016/j.applthermaleng.2016.05.103

    Article  Google Scholar 

  23. Wen J, Yang H, Tong X et al (2016) Configuration parameters design and optimization for plate-fin heat exchangers with serrated fin by multi-objective genetic algorithm. Energy Convers Manag 117:482–489. https://doi.org/10.1016/j.enconman.2016.03.047

    Article  Google Scholar 

  24. Wen J, Yang H, Tong X et al (2016) Optimization investigation on configuration parameters of serrated fin in plate-fin heat exchanger using genetic algorithm. Int J Therm Sci 101:116–125. https://doi.org/10.1016/j.ijthermalsci.2015.10.024

    Article  Google Scholar 

  25. Du J, Yang MN, Yang SF (2016) Correlations and optimization of a heat exchanger with offset fins by genetic algorithm combining orthogonal design. Appl Therm Eng 107:1091–1103. https://doi.org/10.1016/j.applthermaleng.2016.04.074

    Article  Google Scholar 

  26. Peng X, Liu Z, Qiu C, Tan J (2016) Effect of inlet flow maldistribution on the passage arrangement design of multi-stream plate-fin heat exchanger. Appl Therm Eng 103:67–76. https://doi.org/10.1016/j.applthermaleng.2016.04.072

    Article  Google Scholar 

  27. Turgut OE (2016) Hybrid chaotic quantum behaved particle swarm optimization algorithm for thermal design of plate fin heat exchangers. Appl Math Model 40:50–69. https://doi.org/10.1016/j.apm.2015.05.003

    Article  MathSciNet  MATH  Google Scholar 

  28. Rao RV, Saroj A (2016) Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm. Energy Syst. https://doi.org/10.1007/s12667-016-0221-9

    Article  Google Scholar 

  29. Hultmann Ayala HV, Keller P, De Fátima Morais M et al (2016) Design of heat exchangers using a novel multiobjective free search differential evolution paradigm. Appl Therm Eng 94:170–177. https://doi.org/10.1016/j.applthermaleng.2015.10.066

    Article  Google Scholar 

  30. Salviano LO, Dezan DJ, Yanagihara JI (2016) Thermal-hydraulic performance optimization of inline and staggered fin-tube compact heat exchangers applying longitudinal vortex generators. Appl Therm Eng 95:311–329. https://doi.org/10.1016/j.applthermaleng.2015.11.069

    Article  Google Scholar 

  31. Gupta AK, Kumar P, Sahoo RK et al (2017) Performance measurement of plate fin heat exchanger by exploration: ANN, ANFIS, GA, and SA. J Comput Des Eng 4:60–68. https://doi.org/10.1016/j.jcde.2016.07.002

    Article  Google Scholar 

  32. de Vasconcelos Segundo EH, Amoroso AL, Mariani VC, dos Santos Coelho L (2017) Thermodynamic optimization design for plate-fin heat exchangers by Tsallis JADE. Int J Therm Sci 113:136–144. https://doi.org/10.1016/j.ijthermalsci.2016.12.002

    Article  Google Scholar 

  33. Rao RV, Saroj A (2017) A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2017.04.008

    Article  Google Scholar 

  34. Rao RV, Saroj A, Ocloń P et al (2017) Single- and multi-objective design optimization of plate-fin heat exchangers using Jaya algorithm. Heat Transf Eng. https://doi.org/10.1080/01457632.2017.1363629

    Article  Google Scholar 

  35. Liu C, Bu W, Xu D (2017) Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm. Int J Heat Mass Transf 111:65–82. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.066

    Article  Google Scholar 

  36. Özçelik Y (2007) Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm. Appl Therm Eng 27:1849–1856. https://doi.org/10.1016/j.applthermaleng.2007.01.007

    Article  Google Scholar 

  37. Wildi-Tremblay P, Gosselin L (2007) Minimizing shell-and-tube heat exchanger cost with genetic algorithms and considering maintenance. Int J Energy Res 31:867–885. https://doi.org/10.1002/er.1272

    Article  Google Scholar 

  38. Caputo AC, Pelagagge PM, Salini P (2008) Heat exchanger design based on economic optimisation. Appl Therm Eng 28:1151–1159. https://doi.org/10.1016/j.applthermaleng.2007.08.010

    Article  Google Scholar 

  39. Fesanghary M, Damangir E, Soleimani I (2009) Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Appl Therm Eng 29:1026–1031. https://doi.org/10.1016/j.applthermaleng.2008.05.018

    Article  Google Scholar 

  40. Guo J, Cheng L, Xu M (2009) Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm. Appl Therm Eng 29:2954–2960. https://doi.org/10.1016/j.applthermaleng.2009.03.011

    Article  Google Scholar 

  41. Patel VK, Rao RV (2010) Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl Therm Eng 30:1417–1425. https://doi.org/10.1016/j.applthermaleng.2010.03.001

    Article  Google Scholar 

  42. Sanaye S, Hajabdollahi H (2010) Multi-objective optimization of shell and tube heat exchangers. Appl Therm Eng 30:1937–1945. https://doi.org/10.1016/j.applthermaleng.2010.04.018

    Article  Google Scholar 

  43. Sencan Sahin A, Kilic B, Kilic U (2011) Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm. Energy Convers Manag 52:3356–3362. https://doi.org/10.1016/j.enconman.2011.07.003

    Article  Google Scholar 

  44. Rao RV, Patel V (2011) Design optimization of shell and tube heat exchangers using swarm optimization algorithms. Proc Inst Mech Eng Part A J Power Energy 225:619–634. https://doi.org/10.1177/0957650911402888

    Article  Google Scholar 

  45. Mariani VC, Duck ARK, Guerra FA et al (2012) A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers. Appl Therm Eng 42:119–128. https://doi.org/10.1016/j.applthermaleng.2012.03.022

    Article  Google Scholar 

  46. Hajabdollahi H, Ahmadi P, Dincer I (2012) Exergetic optimization of shell-and-tube heat exchangers using NSGA-II. Heat Transf Eng 33:618–628. https://doi.org/10.1080/01457632.2012.630266

    Article  Google Scholar 

  47. Guo J, Xu M (2012) The application of entransy dissipation theory in optimization design of heat exchanger. Appl Therm Eng 36:227–235. https://doi.org/10.1016/j.applthermaleng.2011.12.043

    Article  Google Scholar 

  48. Hadidi A, Hadidi M, Nazari A (2013) A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ICA) from economic point of view. Energy Convers Manag 67:66–74. https://doi.org/10.1016/j.enconman.2012.11.017

    Article  Google Scholar 

  49. Hadidi A, Nazari A (2013) Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl Therm Eng 51:1263–1272. https://doi.org/10.1016/j.applthermaleng.2012.12.002

    Article  Google Scholar 

  50. Fettaka S, Thibault J, Gupta Y (2013) Design of shell-and-tube heat exchangers using multiobjective optimization. Int J Heat Mass Transf 60:343–354. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.047

    Article  Google Scholar 

  51. Guo J, Huai X, Li X et al (2013) Multi-objective optimization of heat exchanger based on entransy dissipation theory in an irreversible Brayton cycle system. Energy 63:95–102. https://doi.org/10.1016/j.energy.2013.10.058

    Article  Google Scholar 

  52. Asadi M, Song Y, Sunden B, Xie G (2014) Economic optimization design of shell-and-tube heat exchangers by a cuckoo-search-algorithm. Appl Therm Eng 73:1030–1038. https://doi.org/10.1016/j.applthermaleng.2014.08.061

    Article  Google Scholar 

  53. Turgut OE, Turgut MS, Coban MT (2014) Design and economic investigation of shell and tube heat exchangers using Improved Intelligent Tuned Harmony Search algorithm. Ain Shams Eng J 5:1215–1231. https://doi.org/10.1016/j.asej.2014.05.007

    Article  Google Scholar 

  54. Yang J, Fan A, Liu W, Jacobi AM (2014) Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory. Energy Convers Manag 78:468–476. https://doi.org/10.1016/j.enconman.2013.11.008

    Article  Google Scholar 

  55. Yang J, Oh SR, Liu W (2014) Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory. Int J Heat Mass Transf 77:1144–1154. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.046

    Article  Google Scholar 

  56. Daroczy L, Janiga G, Thevenin D (2014) Systematic analysis of the heat exchanger arrangement problem using multi-objective genetic optimization. Energy 65:364–373. https://doi.org/10.1016/j.energy.2013.11.035

    Article  Google Scholar 

  57. Amini M, Bazargan M (2013) Two objective optimization in shell-and-tube heat exchangers using genetic algorithm. Appl Therm Eng 69:278–285. https://doi.org/10.1016/j.applthermaleng.2013.11.034

    Article  Google Scholar 

  58. Khosravi R, Khosravi A, Nahavandi S, Hajabdollahi H (2015) Effectiveness of evolutionary algorithms for optimization of heat exchangers. Energy Convers Manag 89:281–288. https://doi.org/10.1016/j.enconman.2014.09.039

    Article  Google Scholar 

  59. Caputo AC, Pelagagge PM, Salini P (2015) Heat exchanger optimized design compared with installed industrial solutions. Appl Therm Eng 87:371–380. https://doi.org/10.1016/j.applthermaleng.2015.05.010

    Article  Google Scholar 

  60. Sadeghzadeh H, Ehyaei MA, Rosen MA (2015) Techno-economic optimization of a shell and tube heat exchanger by genetic and particle swarm algorithms. Energy Convers Manag 93:84–91. https://doi.org/10.1016/j.enconman.2015.01.007

    Article  Google Scholar 

  61. Vahdat Azad A, Vahdat Azad N (2016) Application of nanofluids for the optimal design of shell and tube heat exchangers using genetic algorithm. Case Stud Therm Eng 8:198–206. https://doi.org/10.1016/j.csite.2016.07.004

    Article  Google Scholar 

  62. Wong JYQ, Sharma S, Rangaiah GP (2016) Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria. Appl Therm Eng 93:888–899. https://doi.org/10.1016/j.applthermaleng.2015.10.055

    Article  Google Scholar 

  63. Wen J, Yang H, Jian G et al (2016) Energy and cost optimization of shell and tube heat exchanger with helical baffles using Kriging metamodel based on MOGA. Int J Heat Mass Transf 98:29–39. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.084

    Article  Google Scholar 

  64. Mohanty DK (2016) Application of firefly algorithm for design optimization of a shell and tube heat exchanger from economic point of view. Int J Therm Sci 102:228–238. https://doi.org/10.1016/j.ijthermalsci.2015.12.002

    Article  Google Scholar 

  65. Mohanty DK (2016) Gravitational search algorithm for economic optimization design of a shell and tube heat exchanger. Appl Therm Eng 107:184–193. https://doi.org/10.1016/j.applthermaleng.2016.06.133

    Article  Google Scholar 

  66. Caputo AC, Pelagagge PM, Salini P (2016) Manufacturing cost model for heat exchangers optimization. Appl Therm Eng 94:513–533. https://doi.org/10.1016/j.applthermaleng.2015.10.123

    Article  Google Scholar 

  67. Yin Q, Du WJ, Ji XL, Cheng L (2016) Optimization design and economic analyses of heat recovery exchangers on rotary kilns. Appl Energy 180:743–756. https://doi.org/10.1016/j.apenergy.2016.07.042

    Article  Google Scholar 

  68. de Vasconcelos Segundo EH, Amoroso AL, Mariani VC, dos Santos Coelho L (2017) Economic optimization design for shell-and-tube heat exchangers by a Tsallis differential evolution. Appl Therm Eng 111:143–151. https://doi.org/10.1016/j.applthermaleng.2016.09.032

    Article  Google Scholar 

  69. Rao RV, Saroj A (2017) Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration. Appl Therm Eng 116:473–487. https://doi.org/10.1016/j.applthermaleng.2017.01.071

    Article  Google Scholar 

  70. Rao RV, Saroj A (2017) Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy. https://doi.org/10.1016/j.energy.2017.04.059

    Article  Google Scholar 

  71. Mirzaei M, Hajabdollahi H, Fadakar H (2017) Multi-objective optimization of shell-and-tube heat exchanger by constructal theory. Appl Therm Eng 125:9–19. https://doi.org/10.1016/j.applthermaleng.2017.06.137

    Article  Google Scholar 

  72. Saldanha WH, Soares GL, Machado-Coelho TM et al (2017) Choosing the best evolutionary algorithm to optimize the multiobjective shell-and-tube heat exchanger design problem using PROMETHEE. Appl Therm Eng 127:1049–1061. https://doi.org/10.1016/j.applthermaleng.2017.08.052

    Article  Google Scholar 

  73. Van Pham T, Ay H, Sheu T-S, Liao M (2017) Optimal design for a shell-tube heat exchanger of a binary geothermal power plant from economic point of view. Intell Decis Technol 11:285–296. https://doi.org/10.3233/IDT-170295

    Article  Google Scholar 

  74. Roy U, Majumder M, Barman RN (2017) Designing configuration of shell-and-tube heat exchangers using grey wolf optimisation technique. Int J Autom Control 11:274. https://doi.org/10.1504/IJAAC.2017.084868

    Article  Google Scholar 

  75. Rao V, Saroj A (2017) Constrained economic optimization of shell-and-tube heat exchangers using a self-adaptive multi-population elitist-Jaya algorithm. J Therm Sci Eng Appl. https://doi.org/10.1115/1.4038737

    Article  Google Scholar 

  76. Luo X, Wen Q-Y, Fieg G (2009) A hybrid genetic algorithm for synthesis of heat exchanger networks. Comput Chem Eng 33:1169–1181. https://doi.org/10.1016/j.compchemeng.2008.12.003

    Article  Google Scholar 

  77. Gorji-Bandpy M, Yahyazadeh-Jelodar H, Khalili M (2011) Optimization of heat exchanger network. Appl Therm Eng 31:779–784. https://doi.org/10.1016/j.applthermaleng.2010.10.026

    Article  Google Scholar 

  78. Wang Y, Smith R, Kim JK (2012) Heat exchanger network retrofit optimization involving heat transfer enhancement. Appl Therm Eng 43:7–13. https://doi.org/10.1016/j.applthermaleng.2012.02.018

    Article  Google Scholar 

  79. Ghazi M, Ahmadi P, Sotoodeh AF, Taherkhani A (2012) Modeling and thermo-economic optimization of heat recovery heat exchangers using a multimodal genetic algorithm. Energy Convers Manag 58:149–156. https://doi.org/10.1016/j.enconman.2012.01.008

    Article  Google Scholar 

  80. Ahmad MI, Zhang N, Jobson M, Chen L (2012) Multi-period design of heat exchanger networks. Chem Eng Res Des 90:1883–1895. https://doi.org/10.1016/j.cherd.2012.03.020

    Article  Google Scholar 

  81. Alinia Kashani AH, Maddahi A, Hajabdollahi H (2013) Thermal-economic optimization of an air-cooled heat exchanger unit. Appl Therm Eng 54:43–55. https://doi.org/10.1016/j.applthermaleng.2013.01.014

    Article  Google Scholar 

  82. Qian S, Huang L, Aute V et al (2013) Applicability of entransy dissipation based thermal resistance for design optimization of two-phase heat exchangers. Appl Therm Eng 55:140–148. https://doi.org/10.1016/j.applthermaleng.2013.03.013

    Article  Google Scholar 

  83. Lee SM, Kim KY, Kim SW (2013) Multi-objective optimization of a double-faced type printed circuit heat exchanger. Appl Therm Eng 60:44–50. https://doi.org/10.1016/j.applthermaleng.2013.06.039

    Article  Google Scholar 

  84. Huang S, Ma Z, Cooper P (2014) Optimal design of vertical ground heat exchangers by using entropy generation minimization method and genetic algorithms. Energy Convers Manag 87:128–137. https://doi.org/10.1016/j.enconman.2014.06.094

    Article  Google Scholar 

  85. Juan D, Qin QZ (2014) Multi-objective optimization of a plain fin-and-tube heat exchanger using genetic algorithm. Therm Eng 61:309–317. https://doi.org/10.1134/S004060151404003X

    Article  Google Scholar 

  86. Huang S, Ma Z, Wang F (2015) A multi-objective design optimization strategy for vertical ground heat exchangers. Energy Build 87:233–242. https://doi.org/10.1016/j.enbuild.2014.11.024

    Article  Google Scholar 

  87. Sreepathi BK, Rangaiah GP (2015) Retrofitting of heat exchanger networks involving streams with variable heat capacity: application of single and multi-objective optimization. Appl Therm Eng 75:677–684. https://doi.org/10.1016/j.applthermaleng.2014.09.067

    Article  Google Scholar 

  88. Biyanto TR, Khairansyah MD, Bayuaji R et al (2015) Imperialist competitive algorithm (ICA) for heat exchanger network (HEN) cleaning schedule optimization. Procedia Comput Sci 72:5–12. https://doi.org/10.1016/j.procs.2015.12.099

    Article  Google Scholar 

  89. Lee SM, Kim KY (2015) Multi-objective optimization of arc-shaped ribs in the channels of a printed circuit heat exchanger. Int J Therm Sci 94:1–8. https://doi.org/10.1016/j.ijthermalsci.2015.02.006

    Article  Google Scholar 

  90. Schulte DO, Rühaak W, Welsch B, Sass I (2016) BASIMO—borehole heat exchanger array simulation and optimization tool. Energy Procedia 97:210–217. https://doi.org/10.1016/j.egypro.2016.10.057

    Article  Google Scholar 

  91. Sajedi R, Taheri M, Taghilou M (2016) On the multi-objective optimization of finned air-cooling heat exchanger: nano-fluid effects. J Taiwan Inst Chem Eng 68:360–371. https://doi.org/10.1016/j.jtice.2016.09.028

    Article  Google Scholar 

  92. Diaby AL, Miklavcic SJ, Addai-Mensah J (2016) Optimization of scheduled cleaning of fouled heat exchanger network under ageing using genetic algorithm. Chem Eng Res Des 113:223–240. https://doi.org/10.1016/j.cherd.2016.07.013

    Article  Google Scholar 

  93. Deka D, Datta D (2017) Multi-objective optimization of the scheduling of a heat exchanger network under milk fouling. Knowl Based Syst 121:71–82. https://doi.org/10.1016/j.knosys.2016.12.027

    Article  Google Scholar 

  94. Rao RV (2016) Teaching learning based optimization algorithm. Springer, Cham

    Book  Google Scholar 

  95. Zhang H, Cui G, Xiao Y, Chen J (2017) A novel simultaneous optimization model with efficient stream arrangement for heat exchanger network synthesis. Appl Therm Eng 110:1659–1673. https://doi.org/10.1016/j.applthermaleng.2016.09.045

    Article  Google Scholar 

  96. Darvish Damavandi M, Forouzanmehr M, Safikhani H (2017) Modeling and Pareto based multi-objective optimization of wavy fin-and-elliptical tube heat exchangers using CFD and NSGA-II algorithm. Appl Therm Eng 111:325–339. https://doi.org/10.1016/j.applthermaleng.2016.09.120

    Article  Google Scholar 

  97. Wansaseub K, Pholdee N, Bureerat S (2017) Optimal U-shaped baffle square-duct heat exchanger through surrogate-assisted self-adaptive differential evolution with neighbourhood search and weighted exploitation-exploration. Appl Therm Eng 118:455–463. https://doi.org/10.1016/j.applthermaleng.2017.02.100

    Article  Google Scholar 

  98. Pavão LV, Costa CBB, Ravagnani MASS (2017) Heat exchanger network synthesis without stream splits using parallelized and simplified simulated annealing and particle swarm optimization. Chem Eng Sci 158:96–107. https://doi.org/10.1016/j.ces.2016.09.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkata Rao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, R.V., Saroj, A., Ocloń, P. et al. Design Optimization of Heat Exchangers with Advanced Optimization Techniques: A Review. Arch Computat Methods Eng 27, 517–548 (2020). https://doi.org/10.1007/s11831-019-09318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09318-y

Navigation