Skip to main content

Advertisement

Log in

Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Astrocytes mediate a remarkable variety of cellular functions, including gliotransmitter release. Under pathological conditions, high concentrations of the purinergic receptor agonist adenosine triphosphate (ATP) are released into the extracellular space leading to the activation of the purinergic P2X7 receptor, which in turn can initiate signaling cascades. It is well-established that reactive oxygen species (ROS) increase in macrophages and microglia following P2X7 receptor activation. However, direct evidence that activation of P2X7 receptor leads to ROS production in astrocytes is lacking to date. While it is known that P2X7R activation induces cytokine production, the mechanism involved in this process is unclear. In the present study, we demonstrated that P2X7 receptor activation induced ROS production in spinal astrocytes in a concentration-dependent manner. We also found that P2X7R-mediated ROS production is at least partially through NADPH oxidase. In addition, our ELISA data show that P2X7R-induced IL-6 release was dependent on NADPH oxidase-mediated production of ROS. Collectively, these results reveal that activation of the P2X7 receptor on spinal astrocytes increases ROS production through NADPH oxidase, subsequently leading to IL-6 release. Our results reveal a role of ROS in the P2X7 signaling pathway in mouse spinal cord astrocytes and may indicate a potential mechanism for the astrocytic P2X7 receptor in chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8(3):629–657. https://doi.org/10.1007/s11302-012-9300-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39(3):190–208. https://doi.org/10.1007/s12035-009-8063-2

    Article  CAS  PubMed  Google Scholar 

  3. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190. https://doi.org/10.1002/glia.1107

    Article  CAS  PubMed  Google Scholar 

  4. Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7(4):494–506. https://doi.org/10.1016/j.nurt.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ida T, Hara M, Nakamura Y, Kozaki S, Tsunoda S, Ihara H (2008) Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci Lett 432(3):232–236. https://doi.org/10.1016/j.neulet.2007.12.047

    Article  CAS  PubMed  Google Scholar 

  6. Sheng WS, Hu S, Feng A, Rock RB (2013) Reactive oxygen species from human astrocytes induced functional impairment and oxidative damage. Neurochem Res 38(10):2148–2159. https://doi.org/10.1007/s11064-013-1123-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beamer E, Fischer W, Engel T (2017) The ATP-gated P2X7 receptor as a target for the treatment of drug-resistant epilepsy. Front Neurosci 11:21. https://doi.org/10.3389/fnins.2017.00021

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burnstock G (2013) Introduction to purinergic signalling in the brain. Adv Exp Med Biol 986:1–12. https://doi.org/10.1007/978-94-007-4719-7_1

    Article  CAS  PubMed  Google Scholar 

  9. Volonte C, Apolloni S, Skaper SD, Burnstock G (2012) P2X7 receptors: channels, pores and more. CNS Neurol Disord Drug Targets 11(6):705–721

    Article  CAS  PubMed  Google Scholar 

  10. Sperlagh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35(10):537–547. https://doi.org/10.1016/j.tips.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  11. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78(6):327–346. https://doi.org/10.1016/j.pneurobio.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  12. Lord B, Aluisio L, Shoblock JR, Neff RA, Varlinskaya EI, Ceusters M, Lovenberg TW, Carruthers N, Bonaventure P, Letavic MA, Deak T, Drinkenburg W, Bhattacharya A (2014) Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J Pharmacol Exp Ther 351(3):628–641. https://doi.org/10.1124/jpet.114.218487

    Article  CAS  PubMed  Google Scholar 

  13. Savio LEB, Andrade MGJ, de Andrade Mello P, Santana PT, Moreira-Souza ACA, Kolling J, Longoni A, Feldbrugge L, Wu Y, Wyse ATS, Robson SC, Coutinho-Silva R (2017) P2X7 receptor signaling contributes to sepsis-associated brain dysfunction. Mol Neurobiol 54(8):6459–6470. https://doi.org/10.1007/s12035-016-0168-9

    Article  CAS  PubMed  Google Scholar 

  14. Munoz FM, Gao R, Tian Y, Henstenburg BA, Barrett JE, Hu H (2017) Neuronal P2X7 receptor-induced reactive oxygen species production contributes to nociceptive behavior in mice. Sci Rep 7(1):3539. https://doi.org/10.1038/s41598-017-03813-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartlett R, Yerbury JJ, Sluyter R (2013) P2X7 receptor activation induces reactive oxygen species formation and cell death in murine EOC13 microglia. Mediat Inflamm 2013:271813. https://doi.org/10.1155/2013/271813

    Article  CAS  Google Scholar 

  16. Noguchi T, Ishii K, Fukutomi H, Naguro I, Matsuzawa A, Takeda K, Ichijo H (2008) Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J Biol Chem 283(12):7657–7665. https://doi.org/10.1074/jbc.M708402200

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Sluyter R (2013) P2X7 receptor activation induces reactive oxygen species formation in erythroid cells. Purinergic Signal 9(1):101–112. https://doi.org/10.1007/s11302-012-9335-2

    Article  CAS  PubMed  Google Scholar 

  18. Lenertz LY, Gavala ML, Hill LM, Bertics PJ (2009) Cell signaling via the P2X(7) nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal 5(2):175–187. https://doi.org/10.1007/s11302-009-9133-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hewinson J, Moore SF, Glover C, Watts AG, MacKenzie AB (2008) A key role for redox signaling in rapid P2X7 receptor-induced IL-1 beta processing in human monocytes. J Immunol 180(12):8410–8420

    Article  CAS  PubMed  Google Scholar 

  20. Ferrari D, Wesselborg S, Bauer MK, Schulze-Osthoff K (1997) Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65. J Cell Biol 139(7):1635–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang T, Hoekstra J, Heng X, Kang W, Ding J, Liu J, Chen S, Zhang J (2015) P2X7 receptor is critical in alpha-synuclein--mediated microglial NADPH oxidase activation. Neurobiol Aging 36(7):2304–2318. https://doi.org/10.1016/j.neurobiolaging.2015.03.015

    Article  CAS  PubMed  Google Scholar 

  22. Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J, Mason RP (2012) P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med 52(9):1666–1679. https://doi.org/10.1016/j.freeradbiomed.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007) The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 4:5. https://doi.org/10.1186/1476-9255-4-5

    Article  CAS  Google Scholar 

  24. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276(1):125–132. https://doi.org/10.1074/jbc.M006781200

    Article  CAS  PubMed  Google Scholar 

  25. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shieh CH, Heinrich A, Serchov T, van Calker D, Biber K (2014) P2X7-dependent, but differentially regulated release of IL-6, CCL2, and TNF-alpha in cultured mouse microglia. Glia 62(4):592–607. https://doi.org/10.1002/glia.22628

    Article  PubMed  Google Scholar 

  27. Lu W, Albalawi F, Beckel JM, Lim JC, Laties AM, Mitchell CH (2017) The P2X7 receptor links mechanical strain to cytokine IL-6 up-regulation and release in neurons and astrocytes. J Neurochem 141(3):436–448. https://doi.org/10.1111/jnc.13998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skaper SD (2011) Ion channels on microglia: therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets 10(1):44–56

    Article  CAS  PubMed  Google Scholar 

  29. Nagasawa K, Escartin C, Swanson RA (2009) Astrocyte cultures exhibit P2X7 receptor channel opening in the absence of exogenous ligands. Glia 57(6):622–633. https://doi.org/10.1002/glia.20791

    Article  PubMed  Google Scholar 

  30. Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33. https://doi.org/10.1186/1742-2094-7-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salas E, Carrasquero LM, Olivos-Ore LA, Bustillo D, Artalejo AR, Miras-Portugal MT, Delicado EG (2013) Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture. J Pharmacol Exp Ther 347(3):802–815. https://doi.org/10.1124/jpet.113.209452

    Article  CAS  PubMed  Google Scholar 

  32. Gao X, Xia J, Munoz FM, Manners MT, Pan R, Meucci O, Dai Y, Hu H (2016) STIMs and Orai1 regulate cytokine production in spinal astrocytes. J Neuroinflammation 13(1):126. https://doi.org/10.1186/s12974-016-0594-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saura J (2007) Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 4:26. https://doi.org/10.1186/1742-2094-4-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pfeiffer ZA, Aga M, Prabhu U, Watters JJ, Hall DJ, Bertics PJ (2004) The nucleotide receptor P2X7 mediates actin reorganization and membrane blebbing in RAW 264.7 macrophages via p38 MAP kinase and rho. J Leukoc Biol 75(6):1173–1182. https://doi.org/10.1189/jlb.1203648

    Article  CAS  PubMed  Google Scholar 

  36. Ficker C, Rozmer K, Kato E, Ando RD, Schumann L, Krugel U, Franke H, Sperlagh B, Riedel T, Illes P (2014) Astrocyte-neuron interaction in the substantia gelatinosa of the spinal cord dorsal horn via P2X7 receptor-mediated release of glutamate and reactive oxygen species. Glia 62(10):1671–1686. https://doi.org/10.1002/glia.22707

    Article  PubMed  Google Scholar 

  37. Allsopp RC, Dayl S, Bin Dayel A, Schmid R, Evans RJ (2018) Mapping the allosteric action of antagonists A740003 and A438079 reveals a role for the left flipper in ligand sensitivity at P2X7 receptors. Mol Pharmacol 93(5):553–562. https://doi.org/10.1124/mol.117.111021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pizzurro DM, Dao K, Costa LG (2014) Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol 274(3):372–382. https://doi.org/10.1016/j.taap.2013.11.023

    Article  CAS  PubMed  Google Scholar 

  39. Pawate S, Shen Q, Fan F, Bhat NR (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77(4):540–551. https://doi.org/10.1002/jnr.20180

    Article  CAS  PubMed  Google Scholar 

  40. Apolloni S, Parisi C, Pesaresi MG, Rossi S, Carri MT, Cozzolino M, Volonte C, D'Ambrosi N (2013) The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J Immunol 190(10):5187–5195. https://doi.org/10.4049/jimmunol.1203262

    Article  CAS  PubMed  Google Scholar 

  41. Abramov AY, Jacobson J, Wientjes F, Hothersall J, Canevari L, Duchen MR (2005) Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 25(40):9176–9184. https://doi.org/10.1523/JNEUROSCI.1632-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Youn GS, Cho H, Kim D, Choi SY, Park J (2017) Crosstalk between HDAC6 and Nox2-based NADPH oxidase mediates HIV-1 tat-induced pro-inflammatory responses in astrocytes. Redox Biol 12:978–986. https://doi.org/10.1016/j.redox.2017.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma N, Kapoor M, Nehru B (2016) Apocyanin, NADPH oxidase inhibitor prevents lipopolysaccharide induced alpha-synuclein aggregation and ameliorates motor function deficits in rats: possible role of biochemical and inflammatory alterations. Behav Brain Res 296:177–190. https://doi.org/10.1016/j.bbr.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  44. Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147(1–2):56–61

    Article  CAS  PubMed  Google Scholar 

  45. Lalo U, Palygin O, Verkhratsky A, Grant SG, Pankratov Y (2016) ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci Rep 6:33609. https://doi.org/10.1038/srep33609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36(1):11–21

    Article  CAS  PubMed  Google Scholar 

  47. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424(6950):778–783. https://doi.org/10.1038/nature01786

    Article  CAS  PubMed  Google Scholar 

  48. Coddou C, Sandoval R, Hevia MJ, Stojilkovic SS (2019) Characterization of the antagonist actions of 5-BDBD at the rat P2X4 receptor. Neurosci Lett 690:219–224. https://doi.org/10.1016/j.neulet.2018.10.047

    Article  CAS  PubMed  Google Scholar 

  49. Smith PS, Zhao W, Spitz DR, Robbins ME (2007) Inhibiting catalase activity sensitizes 36B10 rat glioma cells to oxidative stress. Free Radic Biol Med 42(6):787–797. https://doi.org/10.1016/j.freeradbiomed.2006.11.032

    Article  CAS  PubMed  Google Scholar 

  50. Nistico R, Piccirilli S, Cucchiaroni ML, Armogida M, Guatteo E, Giampa C, Fusco FR, Bernardi G, Nistico G, Mercuri NB (2008) Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia. Br J Pharmacol 153(5):1022–1029. https://doi.org/10.1038/sj.bjp.0707587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao P, Ding X, Khan TM, Rong W, Franke H, Illes P (2017) P2X7 receptor-sensitivity of astrocytes and neurons in the substantia gelatinosa of organotypic spinal cord slices of the mouse depends on the length of the culture period. Neuroscience 349:195–207. https://doi.org/10.1016/j.neuroscience.2017.02.030

    Article  CAS  PubMed  Google Scholar 

  52. Pan HC, Chou YC, Sun SH (2015) P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes. Glia 63(5):877–893. https://doi.org/10.1002/glia.22790

    Article  PubMed  Google Scholar 

  53. Kahlert S, Blaser T, Tulapurkar M, Reiser G (2007) P2Y receptor-activating nucleotides modulate cellular reactive oxygen species production in dissociated hippocampal astrocytes and neurons in culture independent of parallel cytosolic Ca(2+) rise and change in mitochondrial potential. J Neurosci Res 85(15):3443–3456. https://doi.org/10.1002/jnr.21316

    Article  CAS  PubMed  Google Scholar 

  54. Illes P, Verkhratsky A, Burnstock G, Franke H (2012) P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 18(5):422–438. https://doi.org/10.1177/1073858411418524

    Article  CAS  PubMed  Google Scholar 

  55. Talley Watts L, Sprague S, Zheng W, Garling RJ, Jimenez D, Digicaylioglu M, Lechleiter J (2013) Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model. J Neurotrauma 30(1):55–66. https://doi.org/10.1089/neu.2012.2488

    Article  PubMed  Google Scholar 

  56. Song X, Guo W, Yu Q, Liu X, Xiang Z, He C, Burnstock G (2011) Regional expression of P2Y(4) receptors in the rat central nervous system. Purinergic Signal 7(4):469–488. https://doi.org/10.1007/s11302-011-9246-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Beamer E, Goloncser F, Horvath G, Beko K, Otrokocsi L, Kovanyi B, Sperlagh B (2016) Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology 104:94–104. https://doi.org/10.1016/j.neuropharm.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  58. Burnstock G (2016) P2X ion channel receptors and inflammation. Purinergic Signal 12(1):59–67. https://doi.org/10.1007/s11302-015-9493-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Friedle SA, Brautigam VM, Nikodemova M, Wright ML, Watters JJ (2011) The P2X7-Egr pathway regulates nucleotide-dependent inflammatory gene expression in microglia. Glia 59(1):1–13. https://doi.org/10.1002/glia.21071

    Article  CAS  PubMed  Google Scholar 

  60. Xu H, Wu B, Jiang F, Xiong S, Zhang B, Li G, Liu S, Gao Y, Xu C, Tu G, Peng H, Liang S, Xiong H (2013) High fatty acids modulate P2X(7) expression and IL-6 release via the p38 MAPK pathway in PC12 cells. Brain Res Bull 94:63–70. https://doi.org/10.1016/j.brainresbull.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  61. McMahon SB, Malcangio M (2009) Current challenges in glia-pain biology. Neuron 64(1):46–54. https://doi.org/10.1016/j.neuron.2009.09.033

    Article  CAS  PubMed  Google Scholar 

  62. Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I (2006) Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol 2(4):259–269. https://doi.org/10.1017/S1740925X07000403

    Article  PubMed  PubMed Central  Google Scholar 

  63. Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2(12):973–985. https://doi.org/10.1038/nrd1251

    Article  CAS  PubMed  Google Scholar 

  64. Gao YJ, Xu ZZ, Liu YC, Wen YR, Decosterd I, Ji RR (2010) The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 148(2):309–319. https://doi.org/10.1016/j.pain.2009.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang Y, Li H, Li TT, Luo H, Gu XY, Lu N, Ji RR, Zhang YQ (2015) Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18. J Neurosci 35(20):7950–7963. https://doi.org/10.1523/JNEUROSCI.5250-14.2015

    Article  CAS  PubMed  Google Scholar 

  66. Ying YL, Wei XH, Xu XB, She SZ, Zhou LJ, Lv J, Li D, Zheng B, Liu XG (2014) Over-expression of P2X7 receptors in spinal glial cells contributes to the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR) in rats. Exp Neurol 261:836–843. https://doi.org/10.1016/j.expneurol.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  67. Falk S, Schwab SD, Frosig-Jorgensen M, Clausen RP, Dickenson AH, Heegaard AM (2015) P2X7 receptor-mediated analgesia in cancer-induced bone pain. Neuroscience 291:93–105. https://doi.org/10.1016/j.neuroscience.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  68. Hassler SN, Johnson KM, Hulsebosch CE (2014) Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats. J Neurochem 131(4):413–417. https://doi.org/10.1111/jnc.12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guedes RP, Araujo AS, Janner D, Bello-Klein A, Ribeiro MF, Partata WA (2008) Increase in reactive oxygen species and activation of Akt signaling pathway in neuropathic pain. Cell Mol Neurobiol 28(8):1049–1056. https://doi.org/10.1007/s10571-008-9279-9

    Article  CAS  PubMed  Google Scholar 

  70. Siniscalco D, Fuccio C, Giordano C, Ferraraccio F, Palazzo E, Luongo L, Rossi F, Roth KA, Maione S, de Novellis V (2007) Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacol Res 55(2):158–166. https://doi.org/10.1016/j.phrs.2006.11.009

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Hu.

Ethics declarations

Funding information

This work was supported by NIH Grants R21NS077330 and R01NS087033 to H.H.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were performed in accordance with the guidelines of the National Institutes of Health (NIH) and with the guidelines of the Committee for Research and Ethical Issues of IASP and were approved by the Animal Care and Use Committee of Rutgers New Jersey Medical School.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munoz, F.M., Patel, P.A., Gao, X. et al. Reactive oxygen species play a role in P2X7 receptor-mediated IL-6 production in spinal astrocytes. Purinergic Signalling 16, 97–107 (2020). https://doi.org/10.1007/s11302-020-09691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09691-5

Keywords

Navigation