Skip to main content
Log in

Thermodynamics of ferredoxin binding to cyanobacterial nitrate reductase

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The role of the seven negatively charged amino acids of Synechocystis sp. PCC 6803 ferredoxin (Fd), i.e., Glu29, Glu30, Asp60, Asp65, Asp66, Glu92, and Glu93, predicted to form complex with nitrate reductase (NR), was investigated using site-directed mutagenesis and isothermal titration calorimetry (ITC). These experiments identified four Fd amino acids, i.e., Glu29, Asp60, Glu92, and Glu93, that are essential for the Fd binding and efficient electron transfer to the NR. ITC measurements showed that the most likely stoichiometry for the wild-type NR/wild-type Fd complex is 1:1, a Kd value 4.7 μM for the complex at low ionic strength residues and both the enthalpic and entropic components are associated with complex formation. ITC titrations of wild-type NR with four Fd variants, E29N, D60N, E92Q, and E93N demonstrated that the complex formation, although favorable, was less energetically favorable when compared to complex formation between the two wild-type proteins, suggesting that these negatively charged Fd residues at these positions are important for the effective and productive interaction with wild-type enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aliverti A, Livraghi A, Piubelli L, Zanetti G (1997) On the role of the acidic cluster Glu 92–94 in spinach ferredoxin I. Biochim Biophys Acata 1342:45–50

    Article  CAS  Google Scholar 

  • Blankenship RE (2001) It takes two to tango. Nat Struct Biol 8:94–95

    Article  CAS  Google Scholar 

  • Bottin H, Lagoutte B (1992) Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta, Bioenerg 1101:48–56

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Callies O, Hernández Daranas A (2016) Application of isothermal titration calorimetry as a tool to study natural product interactions. Nat Prod Rep 33:881–904

    Article  CAS  Google Scholar 

  • Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50

    Article  CAS  Google Scholar 

  • Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325

    Article  CAS  Google Scholar 

  • Goss T, Hanke G (2014) (2014) The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci 15(4):385–393

    Article  CAS  Google Scholar 

  • Hanke G, Mulo P (2013) Plant-type ferredoxins and ferredoxin-dependent enzymes. Plant Cell Environ 36:1071–1084

    Article  CAS  Google Scholar 

  • Hase T, Schürmann P, Knaff DB (2006) The interaction of ferredoxin with ferredoxin-dependent enzymes. In: Golbeck JH (ed) Photosystem 1. Springer, Dordrecht, pp 477–498

    Chapter  Google Scholar 

  • Hirasawa M, Hurley JK, Salamon Z, Tollin G, Markley JL, Chen H, Xia B, Knaff DB (1998) The role of aromatic and acidic amino acids in the electron transfer reaction catalyzed by spinach ferredoxin-dependent glutamate synthase. Biochim Biophys Acta 1363:134–146

    Article  CAS  Google Scholar 

  • Hirasawa M, Rubio LM, Griffin JL, Flores E, Herrero A, Li J, Kim SK, Hurley KJ, Tollin G, Knaff DB (2004) Complex formation between ferredoxin and Synechococcus ferredoxin:nitrate oxidoreductase. Biochim Biophys Acta 1608:155–162

    Article  CAS  Google Scholar 

  • Hurley JK, Hazzard JT, Martínez-Júlvez M, Medina M, Gómez-Moreno C, Tollin G (1999) Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin: NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials. Prot Sci 8:1614–1622

    Article  CAS  Google Scholar 

  • Hurley JK, Morales R, Martinez-Julvez M, Brodie TB, Medina M, Gomez-Moreno C, Tollin G (2002a) Structure–function relationships in Anabaena ferredoxin/ferredoxin:NADP+ reductase electron transfer: insights from site-directed mutagenesis, transient absorption spectroscopy and X-ray crystallography. Biochim Biophys Acta 1554:5–12

    Article  CAS  Google Scholar 

  • Hurley JK, Salamon Z, Meyer TE, Fitch JC, Cusanovich MA, Markley JL, Cheng H, Xia B, Chae YK (2002b) Amino acid residues in Anabaena ferredoxin crucial to interaction with ferredoxin-NADP+ reductase: Site-directed mutagenesis and laser flash photolysis. Biochemistry 32(36):9346–9354

    Article  Google Scholar 

  • Ida S, Mikami B (1983) Purification and characterization of assimilatory nitrate reductase from the cyanobacterium Plectonema boryanum. Plant Cell Physiol 24:649–658

    Article  CAS  Google Scholar 

  • Jacquot J-P, Stein M, Suzuki A, Liottet S, Sandoz G, Miginiac-Maslow M (1997) Residue Glu-91 of Chlamydomonas reinhardtii ferredoxin is essential for electron transfer to ferredoxin-thioredoxin reductase. FEBS Lett 400:293–296

    Article  CAS  Google Scholar 

  • Jelesarov I, Bosshard HR (1994) Thermodynamics of ferredoxin binding to ferredoxin:NADP+ reductase and the role of water at the complex interface. Biochemistry 33(45):13321–13328

    Article  CAS  Google Scholar 

  • Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12:3–18

    Article  CAS  Google Scholar 

  • Knaff DB (1996) Advances in photosynthesis. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 333–361

    Google Scholar 

  • Kozakov D, Hall DR, Beglov D, Brenke R, Comeau SR, Shen Y, Li K, Zheng J, Vakili P, Paschalidis IC, Vajda S (2010) Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19. Proteins Struct Funct Genet 78:3124–3130

    Article  CAS  Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, KimataAriga Y, Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat Struct Biol 8:117–121

    Article  CAS  Google Scholar 

  • Lyskov S, Gray JJ (2008) The RosettaDock server for local protein–protein docking. Nucleic Acids Res 36:W233–W238

    Article  CAS  Google Scholar 

  • Martinez-Julvez M, Medina M, Velazquez-Campoy A (2009) Binding thermodynamics of ferredoxin:NADP+ reductase: two different protein substrates and one energetics. Biophys J 96:4966–4975

    Article  CAS  Google Scholar 

  • Mikami B, Ida S (1984) Purification and properties of ferredoxin-nitrate reductase from the cyanobacterium Plectonema borynaum. Biochim Biophys Acta 791:294–304

    Article  CAS  Google Scholar 

  • Mintseris J, Pierce B, Wiehe K, Anderson R, Chen R, Weng Z (2007) Integrating statistical pair potentials into protein complex prediction. Proteins Struct Funct Genet 69:511–520

    Article  CAS  Google Scholar 

  • Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A (2013) Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 288:35192–35209. https://doi.org/10.1074/jbc.M113.483727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6:e24657

    Article  CAS  Google Scholar 

  • Piubelli L, Zanetti G, Bosshard HR (1997) Recombinant wild-type and mutant complexes of ferredoxin and ferredoxin:NADP+ reductase studied by isothermal titration calorimetry. J Biol Chem 378:715–718

    CAS  Google Scholar 

  • Popovych N, Sun S, Ebright RH, Kalodimos CG (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13:831

    Article  CAS  Google Scholar 

  • Schmitz S, Böhme H (1995) Glutamate 94 of [2Fe2S]-ferredoxins is important for efficient electron transfer in the 1:1 complex formed with ferredoxin-glutamate synthase (GltS) from Synechocystissp. PCC 6803. Biochim Biophys Acta 1231:335–341

    Article  Google Scholar 

  • Srivastava AP, Allen JP, Vaccaro BJ, Hirasawa M, Alkul S, Johnson MK, Knaff DB (2015) Identification of amino acids at the catalytic site of a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 54:5557–5568

    Article  CAS  Google Scholar 

  • Srivastava AP, Hardy EP, Allen JP, Vaccaro BJ, Johnson MK, Knaff DB (2017) Identification of the ferredoxin-binding site of a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 56:5582–5592

    Article  CAS  Google Scholar 

  • Srivastava AP, Hirasawa M, Bhalla M, Chung J-S, Allen JP, Johnson MK, Tripathy JN, Rubio LM, Vaccaro B, Subramanian S, Flores E, Zabet-Moghaddam M, Stitle K, Knaff DB (2013) The roles of four conserved basic amino acids in a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 52:4343–4353

    Article  CAS  Google Scholar 

  • Srivastava AP, Knaff DB, Sétif P (2014) Kinetic Studies of a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 53:5092–5101

    Article  CAS  Google Scholar 

  • Tagawa K, Arnon DI (1962) Ferredoxins as electron carriers in photosynthesis and in the biochemical production and consumption of hydrogen gas. Nature 195:537–543

    Article  CAS  Google Scholar 

  • van den Heuvel RHH, Svergun DI, Petoukhov MV, Coda A, Curti B, Ravasio S, Vanoni MA, Mattevi A (2003) The active conformation of glutamate synthase and its binding to ferredoxin. J Mol Biol 330:113–128

    Article  CAS  Google Scholar 

  • Velázquez-Campoy A, Goňi G, Peregrina JR, Medina M (2006) Exact analysis of heterotropic interactions in proteins: characterization of cooperative ligand binding by isothermal titration calorimetry. Biophys J 91:1887–1904

    Article  CAS  Google Scholar 

  • Xu X, Kim SK, Schurmann P, Hirasawa M, Tripathy JN, Smith J, Ubbink KDB (2006) Ferredoxin/ferredoxin-thioredoxin reductase complex: complete NMR mapping of the interaction site on ferredoxin by gallium substitution. FEBS Lett 580:6714–6720

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy, through Grant DE-FG03-99ER20346 (to D.B.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anurag P. Srivastava or Preethi Rajesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.P., Mishra, N., Prasad, R.L.A. et al. Thermodynamics of ferredoxin binding to cyanobacterial nitrate reductase. Photosynth Res 144, 73–84 (2020). https://doi.org/10.1007/s11120-020-00738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-020-00738-7

Keywords

Navigation