Skip to main content
Log in

GWAS reveals two novel loci for photosynthesis-related traits in soybean

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Photosynthesis plays an extremely important role throughout the life cycle of plants. Improving the photosynthetic rate is a major target for increasing crop productivity. This study was conducted to identify single nucleotide polymorphisms (SNPs) associated with the net photosynthetic rate (Pn), stomatal conductance (Cond), intercellular carbon dioxide concentration (Ci) and transpiration rate (Trmmol) through genome-wide association study (GWAS) and to inspect the relationships among these traits in soybean (Glycine max (L.) Merr.). A population of 219 soybean accessions was used in this research. A total of 12 quantitative trait loci (QTLs) associated with Pn, Cond, Ci and Trmmol were detected and distributed on chromosomes 1, 2, 6, 7, 9, 11, 12, 13, 15, 16, 18, and 19, and some of these QTL overlapped with previously reported QTLs. Furthermore, four candidate genes were identified, and there were significantly different expression levels between the high-light-efficiency accessions and low-light-efficiency accessions. These putative genes may participate in the regulation of photosynthesis through different metabolic pathways. Therefore, the associated novel QTLs and candidate genes detected in this study will provide a theoretical basis for genetic studies of photosynthesis and provide new avenues for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi S, Tsuru Y, Nito N, Murata K, Yamamoto T, Ebitani T, Ookawa T, Hirasawa T (2011) Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. J Exp Bot 62:1927–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO

  • Asseng S, Ewert F, Martre P, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Kimball BA, Ottman MJ, Wall GW, White JW, Reynolds MP, Alderman PD, Prasad PVV, Aggarwal PK, Anothai J, Basso B, Biernath C, Challinor AJ, De Sanctis G, Doltra J, Fereres E, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt LA, Izaurralde RC, Jabloun M, Jones CD, Kersebaum KC, Koehler AK, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Palosuo T, Priesack E, Eyshi Rezaei E, Ruane AC, Semenov MA, Shcherbak I, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn PJ, Waha K, Wang E, Wallach D, Wolf J, Zhao Z, Zhu Y (2015) Rising temperatures reduce global wheat production. Nature Clim Change 5:143–147

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    CAS  PubMed  Google Scholar 

  • Bhusal N, Sharma P, Sareen S, Sarial AK (2018) Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under heat stress. Biol Plant 62:721–731

    CAS  Google Scholar 

  • Contreras-Soto RI, Mora F, de Oliveira MA, Higashi W, Scapim CA, Schuster I (2017) A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis. PLoS ONE 12:e0171105

    PubMed  PubMed Central  Google Scholar 

  • Czyczylo-Mysza I, Tyrka M, Marcinska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA (2013) Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed 32:189–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Silva FM, Lichtenstein G, Alseekh S, Rosado-Souza L, Conte M, Suguiyama VF, Lira BS, Fanourakis D, Usadel B, Bhering LL, DaMatta FM, Sulpice R, Araújo WL, Rossi M, de Setta N, Fernie AR, Carrari F, Nunes-Nesi A (2018) The genetic architecture of photosynthesis and plant growth-related traits in tomato. Plant Cell Environ 41:327–341

    PubMed  Google Scholar 

  • Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, Andy King C, Cregan PB, Song Q, Fritschi FB (2015) Genome-wide association study (GWAS) of carbon isotope ratio (δ13C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet 128:73–91

    CAS  PubMed  Google Scholar 

  • Dhanapal AP, Ray JD, Smith JR, Purcell LC, Fritschi FB (2018) Identification of novel genomic loci associated with soybean shoot tissue macro- and micronutrient concentrations. Plant Genome 11:170066

    Google Scholar 

  • Dogara AM, Jumare AI (2014) Origin, distribution and heading date in cultivated rice. Int J Plant Biol Res 2:1008

    Google Scholar 

  • Driever SM, Lawson T, Andralojc PJ, Raines CA, Parry MA (2014) Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. J Exp Bot 65:4959–4973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren H, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z (2017) Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18:161

    PubMed  PubMed Central  Google Scholar 

  • Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EW, Cutler AJ (2011) The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23:1772–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flood PJ, Harbinson J, Aarts MG (2011) Natural genetic variation in plant photosynthesis. Trends Plant Sci 16:327–335

    CAS  PubMed  Google Scholar 

  • Grundy MJ, Bryan BA, Nolan M, Battaglia M, Hatfield-Dodds S, Connor JD, Keating BA (2016) Scenarios for Australian agricultural production and land use to 2050. Agric Syst 142:70–83

    Google Scholar 

  • Gu J, Yin X, Struik PC, Stomph TJ, Wang H (2012) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot 63:455–469

    CAS  PubMed  Google Scholar 

  • Gulyani V, Khurana P (2011) Identification and expression profiling of drought-regulated genes in mulberry (Morus sp.) by suppression subtractive hybridization of susceptible and tolerant cultivars. Tree Genet Genomes 7:725–738

    Google Scholar 

  • Hao D, Chao M, Yin Z, Yu D (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    CAS  Google Scholar 

  • Hernandez-Ochoa IM, Asseng S, Kassie BT, Xiong W, Robertson R, Luz Pequeno DN, Sonder K, Reynolds M, Babar MA, Molero Milan A, Hoogenboom G (2018) Climate change impact on Mexico wheat production. Agric Forest Meteorol 263:373–387

    Google Scholar 

  • Hervé D, Fabre F, Berrios EF, Leroux N, Chaarani GA, Planchon C, Sarrafi A, Gentzbittel L (2001) QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) under greenhouse conditions. J Exp Bot 52:1857–1864

    PubMed  Google Scholar 

  • Huang JK, Wei W, Cui Q, Xie W (2017) The prospects for China’s food security and imports: will China starve the world via imports? J Integr Agr 16:2933–2944

    Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang Q, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    CAS  PubMed  Google Scholar 

  • Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, Feng Q, Qian Q, Li J, Han B (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–39

    Google Scholar 

  • Jee G (1995) Sixty-three years since Kautsky: chlorophylla fluorescence. Aust J Plant Physiol 22:131–160

    Google Scholar 

  • Jones AM (2016) A new look at stress: abscisic acid patterns and dynamics at high-resolution. New Phytol 210:38–44

    CAS  PubMed  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis 1. Crop Sci 25:192–194

    Google Scholar 

  • Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23:215–220

    CAS  PubMed  Google Scholar 

  • Lee JS, Kim KR, Ha BK, Kang S (2017) Identification of SNPs tightly linked to the QTL for pod shattering in soybean. Mol Breed 37:54

    Google Scholar 

  • Li H, Yang Y, Zhang H, Chu S, Zhang X, Yin D, Yu D, Zhang D (2016) A genetic relationship between phosphorus efficiency and photosynthetic traits in soybean as revealed by QTL analysis using a high-density genetic map. Front Plant Sci 7:924

    PubMed  PubMed Central  Google Scholar 

  • Liang Y, Zhang K, Zhao L, Liu B, Meng Q, Tian J, Zhao S (2009) Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.). Euphytica 171:145–156

    Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C (T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Long SP, Marshall-Colon A, Zhu XG (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66

    CAS  PubMed  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13:241–248

    PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    CAS  PubMed  Google Scholar 

  • Lü H, Yang Y, Li H, Liu Q, Zhang J, Yin J, Chu S, Zhang X, Yu K, Lv L, Chen X, Zhang D (2018) Genome-wide association studies of photosynthetic traits related to phosphorus efficiency in soybean. Front Plant Sci 9:1226

    PubMed  PubMed Central  Google Scholar 

  • Madrid M, Nunez A, Soto T, Vicente-Soler J, Gacto M, Cansado J (2007) Stress-activated protein kinase-mediated down-regulation of the cell integrity pathway mitogen-activated protein kinase Pmk1p by protein phosphatases. Mol Biol Cell 18:4405–4419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao T, Li J, Wen Z, Wu T, Wu C, Sun S, Jiang B, Hou W, Li W, Song Q, Wang D, Han T (2017) Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genom 18:415

    Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    CAS  PubMed  Google Scholar 

  • Oakley CG, Savage L, Lotz S, Larson GR, Thomashow MF, Kramer DM, Schemske DW (2018) Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsisthaliana. J Exp Bot 69:699–709

    CAS  PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MA, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WF, von Caemmerer S, Weber AP, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967

    CAS  PubMed  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    PubMed  Google Scholar 

  • Reeves T, Thomas G, Ramsay G (2016) Save and grow in practice: maize, rice, wheat. A guide to sustainable cereal production (FAO UN, 2016)

  • RStudio Team (2015) RStudio: integrated development for R, 42nd edn. RStudio Inc, Boston, p 14

    Google Scholar 

  • Ruiz-Sola MA, Coman D, Beck G, Barja MV, Colinas M, Graf A, Welsch R, Rutimann P, Buhlmann P, Bigler L, Gruissem W, Rodriguez-Concepcion M, Vranova E (2016) Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. New Phytol 209:252–264

    CAS  PubMed  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    CAS  PubMed  Google Scholar 

  • Takai T, Kondo M, Yano M, Yamamoto T (2010) A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice 3:172–180

    Google Scholar 

  • Teng S, Qian Q, Zeng D, Kunihiro Y, Fujimoto K, Huang D, Zhu L (2004) QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica 135:1–7

    CAS  Google Scholar 

  • Tigchelaar M, Battisti DS, Naylor RL, Rayc DK (2018) Future warming increases probability of globally synchronized maize production shocks. Proc Natl Acad Sci USA 115:6644–6649

    PubMed  PubMed Central  Google Scholar 

  • Tilman D, Balzer C, Hill J, Beforta BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner SD (2014) qqman: an R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv. https://doi.org/10.1101/005165

    Article  Google Scholar 

  • van Bezouw R, Keurentjes JJB, Harbinson J, Aarts MGM (2019) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant J 97:112–133

    PubMed  PubMed Central  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    CAS  PubMed  Google Scholar 

  • Wang B, Liu L, O'Leary GJ, Asseng S, Macadam I, Lines-Kelly R, Yang X, Clark A, Crean J, Sides T, Xing H, Mi C, Yu Q (2018) Australian wheat production expected to decrease by the late 21st century. Glob Change Biol 24:2403–2415

    Google Scholar 

  • Wang J, Chu S, Zhang H, Zhu Y, Cheng H, Yu D (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6:20728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Gai J (2002) Study on the ecological regions of soybean in China. II. Ecological environment and representative varieties. Chin J Appl Ecol 13:71–75

    Google Scholar 

  • Wulfert S, Krueger S (2018) Phosphoserine aminotransferase1 is part of the phosphorylated pathways for serine biosynthesis and essential for light and sugar-dependent growth promotion. Front Plant Sci 9:1712

    PubMed  PubMed Central  Google Scholar 

  • Xu DQ, Shen YK (2002) Photosynthetic efficiency and crop yield. In: Pessarakli M (ed) Handbook of Plant and Crop Physiology, 2nd edn. Marcel Dekker Inc, New York, pp 821–834

    Google Scholar 

  • Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9:550

    PubMed  PubMed Central  Google Scholar 

  • Yan X, Qu C, Li J, Chen L, Liu L (2015) QTL analysis of leaf photosynthesis rate and related physiological traits in Brassicanapus. J Integr Agric 14:1261–1268

    CAS  Google Scholar 

  • Yang F, Xu X, Wang W, Ma J, Wei D, He P, Pampolino MF, Johnston AM (2017) Estimating nutrient uptake requirements for soybean using QUEFTS model in China. PLoS ONE 12:e0177509

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106

    PubMed  PubMed Central  Google Scholar 

  • Yin Z, Meng F, Song H, He X, Xu X, Yu D (2010) Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.). Planta 231:875–885

    CAS  PubMed  Google Scholar 

  • Yin Z, Qin Q, Wu F, Zhang J, Chen T, Sun Q, Zhang Y, Wang H, Deng D (2015) Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize. Euphytica 205:25–35

    CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    CAS  PubMed  Google Scholar 

  • Zhang J, Song Q, Cregan PB, Nelson RL, Wang X, Wu J, Jiang GL (2015) Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycinemax) germplasm. BMC Genomics 16:217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Song H, Cheng H, Hao D, Wang H, Kan G, Jin H, Yu D (2014) The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet 10:e1004061

    PubMed  PubMed Central  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Ministry of Science and Technology (2017YFE0111000), Key Transgenic Breeding Program of China (2016ZX08004-003, 2016ZX08009003-004) and the National Natural Science Foundation of China (31571688).

Author information

Authors and Affiliations

Authors

Contributions

DY and YY developed the experimental design; LW, YY and ZC conducted and validated the phenotypic experiments; YY analyzed the data; SZ and WY extracted RNA; LW wrote the manuscript; and all authors contributed to final review and acceptance of the manuscript.

Corresponding author

Correspondence to Deyue Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Stefan Hohmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, Y., Zhang, S. et al. GWAS reveals two novel loci for photosynthesis-related traits in soybean. Mol Genet Genomics 295, 705–716 (2020). https://doi.org/10.1007/s00438-020-01661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-020-01661-1

Keywords

Navigation