Skip to main content

Advertisement

Log in

Macrophage mediation in normal and diabetic wound healing responses

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Purpose

The failure in timely healing of wounds is a central feature in chronic wounds that leads to physiological, psychological and economic burdens. Macrophages have been demonstrated to have various functions in wounds including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells and tissue restoration following injury. Accumulated evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing wounds. While the overall signaling cascades have been well understood, their complex interplay and a detailed characterization of events that are disrupted in chronic wounds have still not emerged satisfactorily.

Methods

The existing literature was reviewed to summarize the regulation of macrophage polarization in wound closure and dysregulation in non-healing wounds. Further, the review also underscored the role of Nrf2 in promoting macrophage-mediated regulation in wound responses and in particular, macrophage involvement in iron homeostasis that is impaired in chronic wounds such as in diabetes.

Results

The mechanisms involved in the reprogramming of macrophage subtypes in chronic wounds are still emerging. Furthermore, treating non-healing wounds has increasingly been shifting focus from generic treatments to the development of targeted therapies. Increasing evidence suggests the need for modeling wound tissue in vitro which may very well serve a critical aspect to characterize the relevant factors that sustain chronic wounds in vivo such as the constant iron overload at the wound site from recurrent infection and bleeding.

Conclusion

The development of targeted therapies and also developing a reliable means to monitor assisted healing of chronic wounds are two major goals to be pursued. In addition, identifying molecular targets that can regulate macrophages to aid tissue restoration in chronic wounds would serve the crucial step in realizing both aforementioned goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao YL, Tian PX, Han F, Zheng J, Xia XX, Xue WJ, et al. Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone marrow. J Zhejiang Univ Sci B. 2017;18(12):1055–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barbieri SS, Eligini S, Brambilla M, Tremoli E, Colli S. Reactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: critical role of NADPH oxidase. Cardiovasc Res. 2003;60(1):187–97.

    CAS  PubMed  Google Scholar 

  4. Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol. 2011;41(8):2155–64.

    CAS  PubMed  Google Scholar 

  5. Du Y, Ren P, Wang Q, Jiang SK, Zhang M, Li JY, et al. Cannabinoid 2 receptor attenuates inflammation during skin wound healing by inhibiting M1 macrophages rather than activating M2 macrophages. J Inflamm. 2018;15:25.

    CAS  Google Scholar 

  6. Koo JH, Jang HY, Lee Y, Moon YJ, Bae EJ, Yun SK, et al. Myeloid cell-specific sirtuin 6 deficiency delays wound healing in mice by modulating inflammation and macrophage phenotypes. Exp Mol Med. 2019;51(4):48.

    PubMed Central  Google Scholar 

  7. Ferrante CJ, Leibovich SJ. Regulation of macrophage polarization and wound healing. Adv Wound Care. 2012;1(1):10–6.

    Google Scholar 

  8. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2:1–9.

    CAS  Google Scholar 

  9. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.

    PubMed  PubMed Central  Google Scholar 

  10. Goenka S, Kaplan MH. Transcriptional regulation by STAT6. Immunol Res. 2011;50(1):87–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat Commun. 2019;10(1):4353.

    PubMed  PubMed Central  Google Scholar 

  12. Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One. 2014;9(4):e94188.

    PubMed  PubMed Central  Google Scholar 

  13. McFarland BC, Gray GK, Nozell SE, Hong SW, Benveniste EN. Activation of the NF-kappaB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells. Mol Cancer Res. 2013;11(5):494–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14(10):986–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lichanska AM, Hume DA. Origins and functions of phagocytes in the embryo. Exp Hematol. 2000;28(6):601–11.

    CAS  PubMed  Google Scholar 

  17. Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol. 2017;198(4):1387–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hozzein WN, Badr G, Badr BM, Allam A, Ghamdi AA, Al-Wadaan MA, et al. Bee venom improves diabetic wound healing by protecting functional macrophages from apoptosis and enhancing Nrf2, Ang-1 and Tie-2 signaling. Mol Immunol. 2018;103:322–35.

    CAS  PubMed  Google Scholar 

  19. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184(7):3964–77.

    CAS  PubMed  Google Scholar 

  20. Yeh CJ, Chen CC, Leu YL, Lin MW, Chiu MM, Wang SH. The effects of artocarpin on wound healing: in vitro and in vivo studies. Sci Rep. 2017;7(1):15599.

    PubMed  PubMed Central  Google Scholar 

  21. Kamber M, Papalazarou V, Rouni G, Papageorgopoulou E, Papalois A, Kostourou V. Angiotensin II inhibitor facilitates epidermal wound regeneration in diabetic mice. Front Physiol. 2015;6:170.

    PubMed  PubMed Central  Google Scholar 

  22. Feng X, Weng D, Zhou F, Owen YD, Qin H, Zhao J, et al. Activation of PPARgamma by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of macrophage polarization. EBioMedicine. 2016;9:61–766.

    PubMed  PubMed Central  Google Scholar 

  23. Zhuge F, Ni Y, Nagashimada M, Nagata N, Xu L, Mukaida N, et al. DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes. 2016;65(10):2966–79.

    CAS  PubMed  Google Scholar 

  24. Luo X, Huang P, Yuan B, Liu T, Lan F, Lu X, et al. Astragaloside IV enhances diabetic wound healing involving upregulation of alternatively activated macrophages. Int Immunopharmacol. 2016;35:22–8.

    CAS  PubMed  Google Scholar 

  25. Khanna S, Biswas S, Shang Y, Collard E, Azad A, Kauh C, et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS One. 2010;5(3):e9539.

    PubMed  PubMed Central  Google Scholar 

  26. Xu F, Zhang C, Graves DT. Abnormal cell responses and role of TNF-alpha in impaired diabetic wound healing. BioMed Res Int. 2013;2013:754802.

    PubMed  PubMed Central  Google Scholar 

  27. Goova MT, Li J, Kislinger T, Qu W, Lu Y, Bucciarelli LG, et al. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am J Pathol. 2001;159(2):513–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jetten N, Roumans N, Gijbels MJ, Romano A, Post MJ, de Winther MP, et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One. 2014;9(7):e102994.

    PubMed  PubMed Central  Google Scholar 

  29. He R, Yin H, Yuan B, Liu T, Luo L, Huang P, et al. IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Mol Immunol. 2017;90:42–9.

    CAS  PubMed  Google Scholar 

  30. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen H, Shi R, Luo B, Yang X, Qiu L, Xiong J, et al. Macrophage peroxisome proliferator-activated receptor gamma deficiency delays skin wound healing through impairing apoptotic cell clearance in mice. Cell Death Dis. 2015;6:e1597.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Klinkert K, Whelan D, Clover AJP, Leblond AL, Kumar AHS, Caplice NM. Selective M2 Macrophage Depletion Leads to Prolonged Inflammation in Surgical Wounds. Eur Surg Res. 2017;58(3–4):109–20.

    CAS  PubMed  Google Scholar 

  33. Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol. 2003;73(6):713–21.

    CAS  PubMed  Google Scholar 

  34. Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62(7):2579–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Laato M, Heino J, Gerdin B, Kahari VM, Niinikoski J. Interferon-gamma-induced inhibition of wound healing in vivo and in vitro. Ann Chir Gynaecol. 2001;90(Suppl 215):19–23.

    PubMed  Google Scholar 

  36. Hoeksema MA, Scicluna BP, Boshuizen MC, van der Velden S, Neele AE, Van den Bossche J, et al. IFN-gamma priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment. J Immunol. 2015;194(8):3909–16.

    CAS  PubMed  Google Scholar 

  37. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491.

    PubMed  PubMed Central  Google Scholar 

  38. Birkl D, Quiros M, Garcia-Hernandez V, Zhou DW, Brazil JC, Hilgarth R, et al. TNFalpha promotes mucosal wound repair through enhanced platelet activating factor receptor signaling in the epithelium. Mucosal Immunol. 2019;12(4):909–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Meszaros AJ, Reichner JS, Albina JE. Macrophage-induced neutrophil apoptosis. J Immunol. 2000;165(1):435–41.

    CAS  PubMed  Google Scholar 

  40. Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514.

    PubMed  PubMed Central  Google Scholar 

  41. Lefevre L, Gales A, Olagnier D, Bernad J, Perez L, Burcelin R, et al. PPARgamma ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination. PLoS One. 2010;5(9):e12828.

    PubMed  PubMed Central  Google Scholar 

  42. Michlewska S, Dransfield I, Megson IL, Rossi AG. Macrophage phagocytosis of apoptotic neutrophils is critically regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents: key role for TNF-alpha. FASEB J. 2009;23(3):844–54.

    CAS  PubMed  Google Scholar 

  43. Mirza R, Koh TJ. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine. 2011;56(2):256–64.

    CAS  PubMed  Google Scholar 

  44. Weston WL, Dustin RD, Hecht SK. Quantitative assays of human monocyte-macrophage function. J Immunol Methods. 1975;8(3):213–22.

    CAS  PubMed  Google Scholar 

  45. Amici SA, Young NA, Narvaez-Miranda J, Jablonski KA, Arcos J, Rosas L, et al. CD38 is robustly induced in human macrophages and monocytes in inflammatory conditions. Front Immunol. 2018;9:1593.

    PubMed  PubMed Central  Google Scholar 

  46. Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 2018;9:419.

    PubMed  PubMed Central  Google Scholar 

  47. Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;37(13):1–23.

    Google Scholar 

  48. Wheeler KC, Jena MK, Pradhan BS, Nayak N, Das S, Hsu CD, et al. VEGF may contribute to macrophage recruitment and M2 polarization in the decidua. PLoS One. 2018;13(1):e0191040.

    PubMed  PubMed Central  Google Scholar 

  49. Stojadinovic O, Yin N, Lehmann J, Pastar I, Kirsner RS, Tomic-Canic M. Increased number of Langerhans cells in the epidermis of diabetic foot ulcers correlates with healing outcome. Immunol Res. 2013;57(1–3):222–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014;63(3):1103–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng G, Hao D, Chai J. Processing of CXCL12 impedes the recruitment of endothelial progenitor cells in diabetic wound healing. FEBS J. 2014;281(22):5054–62.

    CAS  PubMed  Google Scholar 

  52. Wang J, Zhang Q, Wan R, Mo Y, Li M, Tseng MT, et al. Intracellular adenosine triphosphate delivery enhanced skin wound healing in rabbits. Ann Plast Surg. 2009;62(2):180–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarojini H, Billeter AT, Eichenberger S, Druen D, Barnett R, Gardner SA, et al. Rapid tissue regeneration induced by intracellular ATP delivery—a preliminary mechanistic study. PLoS One. 2017;12(4):e0174899.

    PubMed  PubMed Central  Google Scholar 

  54. Kotwal GJ, Chien S. Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 2017;62:353–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu J, Zgheib C, Hu J, Wu W, Zhang L, Liechty KW. The role of microRNA-15b in the impaired angiogenesis in diabetic wounds. Wound Repair Regen. 2014;22(5):671–7.

    PubMed  Google Scholar 

  56. Xu J, Wu W, Zhang L, Dorset-Martin W, Morris MW, Mitchell ME, et al. The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes. 2012;61(11):2906–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cobos Jimenez V, Bradley EJ, Willemsen AM, van Kampen AH, Baas F, Kootstra NA. Next-generation sequencing of microRNAs uncovers expression signatures in polarized macrophages. Physiol Genomics. 2014;46(3):91–103.

    PubMed  Google Scholar 

  58. Essandoh K, Li Y, Huo J, Fan GC. MiRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 2016;46(2):122–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grey JE, Enoch S, Harding KG. Wound assessment. Bmj. 2006;332(7536):285–8.

    PubMed  PubMed Central  Google Scholar 

  60. PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol. 2017;198(10):3775–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sheehan P, Jones P, Caselli A, Giurini JM, Veves A. Percent change in wound area of diabetic foot ulcers over a 4-week period is a robust predictor of complete healing in a 12-week prospective trial. Diabetes Care. 2003;26(6):1879–82.

    PubMed  Google Scholar 

  62. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao M, Nguyen TT, Suckow MA, Wolter WR, Gooyit M, Mobashery S, et al. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci USA. 2015;112(49):15226–31.

    CAS  PubMed  Google Scholar 

  64. Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, et al. Molecular pathogenesis of chronic wounds: the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol. 2005;167(1):59–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kobayashi N, Karisola P, Pena-Cruz V, Dorfman DM, Jinushi M, Umetsu SE, et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity. 2007;27(6):927–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang S, Liu Y, Zhang X, Zhu D, Qi X, Cao X, et al. Prostaglandin E2 hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics. 2018;8(19):5348–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang CL, Sun YH, Yu WH, Yin XZ, Weng J, Feng B. Modulation of macrophage phenotype through controlled release of interleukin-4 from gelatine coatings on titanium surfaces. Eur Cells Mater. 2018;36:15–29.

    CAS  Google Scholar 

  68. Weisser SB, van Rooijen N, Sly LM. Depletion and reconstitution of macrophages in mice. J Vis Exp. 2012;66:4105.

    Google Scholar 

  69. Hu MS, Walmsley GG, Barnes LA, Weiskopf K, Rennert RC, Duscher D, et al. Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair. JCI Insight. 2017;2(19):15–29.

    Google Scholar 

  70. Lee YJ, Kwon SB, An JM, Kim CH, Lee SH, Choi CY, et al. Increased protein oxidation and decreased expression of nuclear factor E2-related factor 2 protein in skin tissue of patients with diabetes. Clin Exp Dermatol. 2015;40(2):192–200.

    CAS  PubMed  Google Scholar 

  71. Joshi N, Werner S. Nrf2 is highly expressed in neutrophils, but myeloid cell-derived Nrf2 is dispensable for wound healing in mice. PLoS One. 2017;12(10):e0187162.

    PubMed  PubMed Central  Google Scholar 

  72. Dhamodharan U, Karan A, Sireesh D, Vaishnavi A, Somasundar A, Rajesh K, et al. Tissue-specific role of Nrf2 in the treatment of diabetic foot ulcers during hyperbaric oxygen therapy. Free Radc Biol Med. 2019;138:53–62.

    CAS  Google Scholar 

  73. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Soares MA, Cohen OD, Low YC, Sartor RA, Ellison T, Anil U, et al. Restoration of Nrf2 signaling normalizes the regenerative niche. Diabetes. 2016;65(3):633–46.

    CAS  PubMed  Google Scholar 

  75. Visan I. Wound healing. Nat Immunol. 2019;20(9):1089.

    PubMed  Google Scholar 

  76. Kimball AS, Davis FM, denDekker A, Joshi AD, Schaller MA, Bermick J, et al. The histone methyltransferase Setdb2 modulates macrophage phenotype and uric acid production in diabetic wound repair. Immunity. 2019;51(2):258–71.e5.

    CAS  PubMed  Google Scholar 

  77. Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans. 2015;43(4):621–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang J, Su J, Wan F, Yang N, Jiang H, Fang M, et al. Tissue kallikrein protects against ischemic stroke by suppressing TLR4/NF-kappaB and activating Nrf2 signaling pathway in rats. Exp Ther Med. 2017;14(2):1163–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Feng J, Dong C, Long Y, Mai L, Ren M, Li L, et al. Elevated Kallikrein-binding protein in diabetes impairs wound healing through inducing macrophage M1 polarization. Cell Commun Signal. 2019;17(1):60.

    PubMed  PubMed Central  Google Scholar 

  80. Rushworth SA, MacEwan DJ. HO-1 underlies resistance of AML cells to TNF-induced apoptosis. Blood. 2008;111(7):3793–801.

    CAS  PubMed  Google Scholar 

  81. Zhou Y, Que KT, Zhang Z, Yi ZJ, Zhao PX, You Y, et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 2018;7(8):4012–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vijayan V, Wagener F, Immenschuh S. The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol. 2018;153:159–67.

    CAS  PubMed  Google Scholar 

  83. Soares MP, Hamza I. Macrophages and iron metabolism. Immunity. 2016;44(3):492–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ahanger AA, Prawez S, Kumar D, Prasad R, Amarpal, Tandan SK, et al. Wound healing activity of carbon monoxide liberated from CO-releasing molecule (CO-RM). Naunyn Schmiedebergs Arch Pharmacol. 2011;384(1):93–102.

    CAS  PubMed  Google Scholar 

  85. Wright JA, Oddy MJ, Richards T. Presence and characterisation of anaemia in diabetic foot ulceration. Anemia. 2014;2014:104214.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wright JA, Richards T, Srai SK. The role of iron in the skin and cutaneous wound healing. Front Pharmacol. 2014;5:156.

    PubMed  PubMed Central  Google Scholar 

  87. Wlaschek M, Singh K, Sindrilaru A, Crisan D, Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Rad Biol Med. 2019;133:262–75.

    CAS  PubMed  Google Scholar 

  88. Fischer BM, Domowicz DA, Zheng S, Carter JL, McElvaney NG, Taggart C, et al. Neutrophil elastase increases airway epithelial nonheme iron levels. Clin Transl Sci. 2009;2(5):333–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid Med Cell Longev. 2013;2013:523652.

    PubMed  PubMed Central  Google Scholar 

  90. Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK. Identification of the receptor scavenging hemopexin-heme complexes. Blood. 2005;106(7):2572–9.

    CAS  PubMed  Google Scholar 

  91. He H, Xu J, Warren CM, Duan D, Li X, Wu L, et al. Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood. 2012;120(15):3152–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fortes GB, Alves LS, de Oliveira R, Dutra FF, Rodrigues D, Fernandez PL, et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood. 2012;119(10):2368–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chamberlain LM, Godek ML, Gonzalez-Juarrero M, Grainger DW. Phenotypic non-equivalence of murine (monocyte-) macrophage cells in biomaterial and inflammatory models. J Biomed Mater Research Part A. 2009;88(4):858–71.

    Google Scholar 

  94. Gambelli F, Di P, Niu X, Friedman M, Hammond T, Riches DW, et al. Phosphorylation of tumor necrosis factor receptor 1 (p55) protects macrophages from silica-induced apoptosis. J Biol Chem. 2004;279(3):2020–9.

    CAS  PubMed  Google Scholar 

  95. Kolumam G, Wu X, Lee WP, Hackney JA, Zavala-Solorio J, Gandham V, et al. IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice. PLoS One. 2017;12(1):e0170639.

    PubMed  PubMed Central  Google Scholar 

  96. Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Bioengineering. 2018;5(3):1–26.

    Google Scholar 

  97. Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model: contraction revisited. Wound Repair Regen. 2015;23(6):874–7.

    PubMed  PubMed Central  Google Scholar 

  98. Loffler M, Zieker D, Weinreich J, Lob S, Konigsrainer I, Symons S, et al. Wound fluid lactate concentration: a helpful marker for diagnosing soft-tissue infection in diabetic foot ulcers? Preliminary findings. Diabet Med. 2011;28(2):175–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunka Mohanram Ramkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Dr. John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, G.V., Ramkumar, K.M. Macrophage mediation in normal and diabetic wound healing responses. Inflamm. Res. 69, 347–363 (2020). https://doi.org/10.1007/s00011-020-01328-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01328-y

Keywords

Navigation