Skip to main content

Advertisement

Log in

Interleukin 23 and autoimmune diseases: current and possible future therapies

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Purpose

IL-23 is a central proinflammatory cytokine with a wide range of influence over immune response. It is implicated in several autoimmune diseases due to the infinite inflammatory loops it can create through the positive feedbacks of both IL-17 and IL-22 arms. This made IL-23 a key target of autoimmune disorders therapy, which indeed was proven to inhibit inflammation and ameliorate diseases. Current autoimmune treatments targeting IL-23 are either by preventing IL-23 ligation to its receptor (IL-23R) via antibodies or inhibiting IL-23 signaling by signaling downstream mediators’ inhibitors, with each approach having its own pros and cons.

Methods

Literature review was done to further understand the biology of IL-23 and current therapies.

Results

In this review, we discuss the biological features of IL-23 and its role in the pathogenesis of autoimmune diseases including psoriasis, rheumatoid arthritis and inflammatory bowel diseases. Advantages, limitations and side effects of each concept will be reviewed, suggesting several advanced IL-23-based bio-techniques to generate new and possible future therapies to overcome current treatments problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819–26.

    Article  CAS  Google Scholar 

  2. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci [Internet]. 2019;110(7):2080–9. https://www.ncbi.nlm.nih.gov/pubmed/31102428.

  3. Doria A, Zen M, Bettio S, Gatto M, Bassi N, Nalotto L, et al. Autoinflammation and autoimmunity: bridging the divide. Autoimmun Rev. 2012;12(1):22–30.

    Article  CAS  Google Scholar 

  4. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Investig. 2015;125(6):2228–33.

    Article  Google Scholar 

  5. Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J. 2017;8(3):295–311.

    Article  Google Scholar 

  6. Croxford AL, Mair F, Becher B. IL-23: one cytokine in control of autoimmunity. Eur J Immunol. 2012;42(9):2263–73.

    Article  CAS  Google Scholar 

  7. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25. https://www.ncbi.nlm.nih.gov/pubmed/11114383

  8. Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem. 2001;276(40):37692–9. https://doi.org/10.1074/jbc.M105927200.

    Article  CAS  PubMed  Google Scholar 

  9. Smits HH, van Beelen AJ, Hessle C, Westland R, de Jong E, Soeteman E, et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur J Immunol. 2004;34(5):1371–80. https://www.ncbi.nlm.nih.gov/pubmed/15114670.

  10. Lyakh L, Trinchieri G, Provezza L, Carra G, Gerosa F. Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans. Immunol Rev. 2008;226(1):112–31. https://doi.org/10.1111/j.1600-065X.2008.00700.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhan U, Newstead MJ, Zeng X, Podsaid A, Goswami M, Ballinger MN, et al. TLR9-dependent IL-23/IL-17 is required for the generation of Stachybotrys chartarum-induced hypersensitivity pneumonitis. J Immunol. 2013;190(1):349–56. https://www.ncbi.nlm.nih.gov/pubmed/23180821.

  12. Bhan U, Ballinger MN, Zeng X, Newstead MJ, Cornicelli MD, Standiford TJ. Cooperative interactions between TLR4 and TLR9 regulate interleukin 23 and 17 production in a murine model of gram negative bacterial pneumonia. PLoS One. 2010;5(3):e9896. https://www.ncbi.nlm.nih.gov/pubmed/20360853.

  13. Al-Salleeh F, Petro TM. TLR3 and TLR7 are involved in expression of IL-23 subunits while TLR3 but not TLR7 is involved in expression of IFN-beta by Theiler’s virus-infected RAW264.7 cells. Microbes Infect. 2007;9(11):1384–92. https://www.ncbi.nlm.nih.gov/pubmed/17897860.

  14. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity. 2006;25(2):309–18. https://linkinghub.elsevier.com/retrieve/pii/S1074761306003505.

  15. Schwarz H, Posselt G, Wurm P, Ulbing M, Duschl A, Horejs-Hoeck J. TLR8 and NOD signaling synergistically induce the production of IL-1β and IL-23 in monocyte-derived DCs and enhance the expression of the feedback inhibitor SOCS2. Immunobiology. 2013;218(4):533–42. https://www.ncbi.nlm.nih.gov/pubmed/22795647.

  16. Brain O, Owens BMJ, Pichulik T, Allan P, Khatamzas E, Leslie A, et al. The intracellular sensor NOD2 induces microRNA-29 expression in human dendritic cells to limit IL-23 release. Immunity. 2013;39(3):521–36. https://www.ncbi.nlm.nih.gov/pubmed/24054330.

  17. Liu F-L, Chen C-H, Chu S-J, Chen J-H, Lai J-H, Sytwu H-K, et al. Interleukin (IL)-23 p19 expression induced by IL-1 in human fibroblast-like synoviocytes with rheumatoid arthritis via active nuclear factor-B and AP-1 dependent pathway. Rheumatology. 2007;46(8):1266–73. https://doi.org/10.1093/rheumatology/kem055.

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Yao Q, Mariscal AG, Wu X, Hülse J, Pedersen E, et al. Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nat Commun. 2018;9(1):1420. https://www.nature.com/articles/s41467-018-03704-z.

  19. Goldberg M, Nadiv O, Luknar-Gabor N, Agar G, Beer Y, Katz Y. Synergism between tumor necrosis factor alpha and interleukin-17 to induce IL-23 p19 expression in fibroblast-like synoviocytes. Mol Immunol. 2009;46(8–9):1854–9. https://www.ncbi.nlm.nih.gov/pubmed/19201028.

  20. Zakharova M, Ziegler HK. Paradoxical anti-inflammatory actions of TNF-alpha: inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells. J Immunol. 2005;175(8):5024–33. https://www.ncbi.nlm.nih.gov/pubmed/16210605.

  21. Qian X, Ning H, Zhang J, Hoft DF, Stumpo DJ, Blackshear PJ, et al. Posttranscriptional regulation of IL-23 expression by IFN-gamma through tristetraprolin. J Immunol. 2011;186(11):6454–64. https://www.ncbi.nlm.nih.gov/pubmed/21515794.

  22. Molle C, Zhang T, Ysebrant de Lendonck L, Gueydan C, Andrianne M, Sherer F, et al. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J Exp Med. 2013;210(9):1675–84. https://www.ncbi.nlm.nih.gov/pubmed/23940256.

  23. Liu W, Ouyang X, Yang J, Liu J, Li Q, Gu Y, et al. AP-1 activated by toll-like receptors regulates expression of IL-23 p19. J Biol Chem. 2009;284(36):24006–16. https://www.ncbi.nlm.nih.gov/pubmed/19592489.

  24. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168(11):5699–708. https://www.ncbi.nlm.nih.gov/pubmed/12023369.

  25. Vignali DAA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol. 2012;13(8):722–8. https://www.nature.com/articles/ni.2366.

  26. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421(6924):744–8. https://www.nature.com/articles/nature01355.

  27. Belladonna ML, Renauld J-C, Bianchi R, Vacca C, Fallarino F, Orabona C, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol. 2002;168(11):5448–544. https://doi.org/10.4049/jimmunol.168.11.5448.

    Article  CAS  PubMed  Google Scholar 

  28. Chan IH, Jain R, Tessmer MS, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7(4):842–56. https://www.ncbi.nlm.nih.gov/pubmed/24280935.

  29. Wang D, Xiang T, Zhao Z, Lin K, Yin P, Jiang L, et al. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells. Oncotarget. 2016;7(46):76006–20. https://www.ncbi.nlm.nih.gov/pubmed/27738346.

  30. Cocco C, Morandi F, Airoldi I. Interleukin-27 and interleukin-23 modulate human plasma cell functions. J Leukoc Biol. 2011;89(5):729–34. https://doi.org/10.1189/jlb.1210660.

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Wang H, Lu H, Hua S. Regulation of memory T cells by interleukin-23. Int Arch Allergy Immunol. 2016;169(3):157–62. https://www.ncbi.nlm.nih.gov/pubmed/27100864.

  32. Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the Yin and the Yang. Trends Immunol. 2017;38(5):310–22. https://doi.org/10.1016/j.it.2017.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007;8(9):950–7.

    Article  CAS  Google Scholar 

  34. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–63. https://doi.org/10.1074/jbc.C600321200.

    Article  CAS  PubMed  Google Scholar 

  35. Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol. 2008;181(9):5948–55. https://www.ncbi.nlm.nih.gov/pubmed/18941183.

  36. Revu S, Wu J, Henkel M, Rittenhouse N, Menk A, Delgoffe GM, et al. IL-23 and IL-1β drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation. Cell Rep. 2018;22(10):2642–53. https://linkinghub.elsevier.com/retrieve/pii/S2211124718302250.

  37. Rutz S, Eidenschenk C, Ouyang W. IL-22, not simply a Th17 cytokine. Immunol Rev. 2013;252(1):116–32.

    Article  Google Scholar 

  38. Malik S, Want MY, Awasthi A. The emerging roles of gamma-delta T cells in tissue inflammation in experimental autoimmune encephalomyelitis. Front Immunol. 2016;7(JAN):14. https://www.ncbi.nlm.nih.gov/pubmed/26858718.

  39. Eberl G, Colonna M, Di Santo JP, McKenzie ANJ. Innate lymphoid cells: a new paradigm in immunology. Science (80-). 2015;348(6237):aaa6566. https://doi.org/10.3389/fimmu.2016.00014.

    Article  CAS  Google Scholar 

  40. Chen F, Cao A, Yao S, Evans-Marin HL, Liu H, Wu W, et al. mTOR mediates IL-23 induction of neutrophil IL-17 and IL-22 production. J Immunol. 2016;196(10):4390–9. https://doi.org/10.4049/jimmunol.1501541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hou Y, Zhu L, Tian H, Sun H-X, Wang R, Zhang L, et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein Cell. 2018;9(12):1027–38. https://doi.org/10.1007/s13238-018-0505-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JKM, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457(7230):722–5. https://doi.org/10.1038/nature07537.

    Article  CAS  PubMed  Google Scholar 

  43. Passos ST, Silver JS, O’Hara AC, Sehy D, Stumhofer JS, Hunter CA. IL-6 promotes NK cell production of IL-17 during toxoplasmosis. J Immunol. 2010;184(4):1776–833. https://doi.org/10.4049/jimmunol.0901843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harb Perspect Med. 2014;4(8):a015354. https://doi.org/10.1101/cshperspect.a015354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9. https://www.nature.com/articles/nature06116.

  46. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 2009;206(9):1983–94. https://www.ncbi.nlm.nih.gov/pubmed/19703986.

  47. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC, et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Investig Dermatol. 2009;129(1):79–88. https://linkinghub.elsevier.com/retrieve/pii/S0022202X15340756.

  48. Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J Clin Investig. 2012;122(6):2252–6. https://www.ncbi.nlm.nih.gov/pubmed/22546855.

  49. Gallais Sérézal I, Classon C, Cheuk S, Barrientos-Somarribas M, Wadman E, Martini E, et al. Resident T cells in resolved psoriasis steer tissue responses that stratify clinical outcome. J Investig Dermatol. 2018;138(8):1754–63. https://linkinghub.elsevier.com/retrieve/pii/S0022202X18302033.

  50. Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol. 2007;178(4):2229–40. https://doi.org/10.4049/jimmunol.178.4.2229.

    Article  CAS  PubMed  Google Scholar 

  51. Ma H-L, Liang S, Li J, Napierata L, Brown T, Benoit S, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Investig. 2008. https://content.the-jci.org/articles/view/33263.

  52. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Prim. 2018;4(8):18001. https://doi.org/10.1038/nrdp.2018.1.

    Article  PubMed  Google Scholar 

  53. Yago T, Nanke Y, Kawamoto M, Kobashigawa T, Yamanaka H, Kotake S. IL-23 and Th17 disease in inflammatory arthritis. J Clin Med. 2017;6(9):81. https://www.mdpi.com/2077-0383/6/9/81.

  54. Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46(2):183–96. https://www.ncbi.nlm.nih.gov/pubmed/28228278.

  55. Kurowska-Stolarska M, Alivernini S. Synovial tissue macrophages: friend or foe? RMD Open. 2017;3(2):e000527. https://www.ncbi.nlm.nih.gov/pubmed/29299338.

  56. Zrioual S, Toh M-L, Tournadre A, Zhou Y, Cazalis M-A, Pachot A, et al. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol. 2008;180(1):655–63. https://doi.org/10.4049/jimmunol.180.1.655.

    Article  CAS  PubMed  Google Scholar 

  57. Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, et al. IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-α antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem. 2009;108(4):947–55. https://doi.org/10.1002/jcb.22326.

    Article  CAS  PubMed  Google Scholar 

  58. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Investig. 1999;103(9):1345–52. https://www.ncbi.nlm.nih.gov/pubmed/10225978.

  59. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673–82. https://www.ncbi.nlm.nih.gov/pubmed/17088434.

  60. Kim K-W, Kim H-R, Park J-Y, Park J-S, Oh H-J, Woo Y-J, et al. Interleukin-22 promotes osteoclastogenesis in rheumatoid arthritis through induction of RANKL in human synovial fibroblasts. Arthritis Rheum. 2012;64(4):1015–23. https://doi.org/10.1002/art.33446.

    Article  CAS  PubMed  Google Scholar 

  61. Mitra A, Raychaudhuri SK, Raychaudhuri SP. IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine. 2012;60(1):38–42. https://linkinghub.elsevier.com/retrieve/pii/S1043466612005613.

  62. Cunnane G, Fitzgerald O, Beeton C, Cawston TE, Bresnihan B. Early joint erosions and serum levels of matrix metalloproteinase 1, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 in rheumatoid arthritis. Arthritis Rheum. 2001;44(10):2263–74. https://www.ncbi.nlm.nih.gov/pubmed/12509618.

  63. Zhang Y-Z, Li Y-Y. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20(1):91–9. https://www.wjgnet.com/1007-9327/full/v20/i1/91.htm.

  64. Jung C, Hugot J-P, Barreau F. Peyer’s patches: the immune sensors of the intestine. Int J Inflamm. 2010;2010:823710. https://www.ncbi.nlm.nih.gov/pubmed/21188221.

  65. Siakavellas SI, Bamias G. Role of the IL-23/IL-17 axis in Crohn’s disease. Discov Med. 2012;14(77):253–62. https://www.ncbi.nlm.nih.gov/pubmed/23114581.

  66. Hindryckx P, Jairath V, D’Haens G. Acute severe ulcerative colitis: from pathophysiology to clinical management. Nat Rev Gastroenterol Hepatol. 2016;13(11):654–64. https://doi.org/10.1038/nrgastro.2016.116.

    Article  CAS  PubMed  Google Scholar 

  67. Geremia A, Arancibia-Cárcamo CV, Fleming MPP, Rust N, Singh B, Mortensen NJ, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208(6):1127–33. https://www.ncbi.nlm.nih.gov/pubmed/21576383.

  68. Sun X, Cai Y, Fleming C, Tong Z, Wang Z, Ding C, et al. Innate γδT17 cells play a protective role in DSS-induced colitis via recruitment of Gr-1+ CD11b+ myeloid suppressor cells. Oncoimmunology. 2017;6(5):e1313369. https://doi.org/10.1080/2162402X.2017.1313369.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee JW, Wang P, Kattah MG, Youssef S, Steinman L, DeFea K, et al. Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol. 2008;181(9):6536–45. https://doi.org/10.4049/jimmunol.181.9.6536.

    Article  CAS  PubMed  Google Scholar 

  70. Biancheri P, Pender SL, Ammoscato F, Giuffrida P, Sampietro G, Ardizzone S, et al. The role of interleukin 17 in Crohn’s disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair. 2013;6(1):13. https://www.ncbi.nlm.nih.gov/pubmed/23834907.

  71. Wang K, Kim MK, Di Caro G, Wong J, Shalapour S, Wan J, et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity. 2014;41(6):1052–63. https://www.ncbi.nlm.nih.gov/pubmed/25526314.

  72. Hyun YS, Han DS, Lee AR, Eun CS, Youn J, Kim H-Y. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis. 2012;33(4):931–6. https://www.ncbi.nlm.nih.gov/pubmed/22354874.

  73. Kim K, Kim G, Kim J-Y, Yun HJ, Lim S-C, Choi HS. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 2014;35(6):1352–61. https://doi.org/10.1093/carcin/bgu044.

    Article  CAS  PubMed  Google Scholar 

  74. Radaeva S, Sun R, Pan H-N, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology. 2004;39(5):1332–42. https://www.ncbi.nlm.nih.gov/pubmed/15122762.

  75. Li L-J, Gong C, Zhao M-H, Feng B-S. Role of interleukin-22 in inflammatory bowel disease. World J Gastroenterol. 2014;20(48):18177–88. https://www.ncbi.nlm.nih.gov/pubmed/25561785.

  76. Yu L-Z, Wang H-Y, Yang S-P, Yuan Z-P, Xu F-Y, Sun C, et al. Expression of interleukin-22/STAT3 signaling pathway in ulcerative colitis and related carcinogenesis. World J Gastroenterol. 2013;19(17):2638–49. https://www.ncbi.nlm.nih.gov/pubmed/23674871.

  77. Aden K, Rehman A, Falk-Paulsen M, Secher T, Kuiper J, Tran F, et al. Epithelial IL-23R signaling licenses protective IL-22 responses in intestinal inflammation. Cell Rep. 2016;16(8):2208–18. https://www.ncbi.nlm.nih.gov/pubmed/27524624.

  78. Liang SC, Tan X-Y, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203(10):2271–9. https://www.ncbi.nlm.nih.gov/pubmed/16982811.

  79. Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. 2018;53(4):465–74. https://www.ncbi.nlm.nih.gov/pubmed/29075900.

  80. Zhang X, Wei L, Wang J, Qin Z, Wang J, Lu Y, et al. Suppression colitis and colitis-associated colon cancer by anti-S100a9 antibody in mice. Front Immunol. 2017;8:1774. https://www.ncbi.nlm.nih.gov/pubmed/29326691.

  81. Zhang X, Ai F, Li X, She X, Li N, Tang A, et al. Inflammation-induced S100A8 activates Id3 and promotes colorectal tumorigenesis. Int J Cancer. 2015;137(12):2803–14. https://www.ncbi.nlm.nih.gov/pubmed/26135667.

  82. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1(3):183–97. https://www.nature.com/articles/mi20085.

  83. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Investig. 2008;118(2):534–44. https://www.ncbi.nlm.nih.gov/pubmed/18172556.

  84. Tsai P-Y, Zhang B, He W-Q, Zha J-M, Odenwald MA, Singh G, et al. IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance. Cell Host Microbe. 2017;21(6):671–681. https://www.ncbi.nlm.nih.gov/pubmed/28618266.

  85. Wilson MS, Feng CG, Barber DL, Yarovinsky F, Cheever AW, Sher A, et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J Immunol. 2010;184(8):4378–90. https://www.ncbi.nlm.nih.gov/pubmed/20220096.

  86. Visvanathan S, Baum P, Vinisko R, Schmid R, Flack M, Lalovic B, et al. Psoriatic skin molecular and histopathologic profiles after treatment with risankizumab versus ustekinumab. J Allergy Clin Immunol. 2019;143(6):2158–69. https://linkinghub.elsevier.com/retrieve/pii/S1074761314000296.

  87. Cayatte C, Joyce-Shaikh B, Vega F, Boniface K, Grein J, Murphy E, et al. Biomarkers of therapeutic response in the IL-23 pathway in inflammatory bowel disease. Clin Transl Gastroenterol. 2012;3(2):e10. https://insights.ovid.com/crossref?an=01720094-201202000-00003.

  88. Sofen H, Smith S, Matheson RT, Leonardi CL, Calderon C, Brodmerkel C, et al. Guselkumab (an IL-23-specific mAb) demonstrates clinical and molecular response in patients with moderate-to-severe psoriasis. J Allergy Clin Immunol. 2014;133(4):1032–40. https://linkinghub.elsevier.com/retrieve/pii/S009167491400181X.

  89. Visvanathan S, Baum P, Vinisko R, Schmid R, Flack M, Lalovic B, et al. Psoriatic skin molecular and histopathologic profiles after treatment with risankizumab versus ustekinumab. J Allergy Clin Immunol. 2019;143(6):2158–69. https://linkinghub.elsevier.com/retrieve/pii/S0091674918327854.

  90. Alsheikh MM, El-Shafey AM, Gawish HH, El-Desoky ET. Serum interleukin-23 level in rheumatoid arthritis patients: relation to disease activity and severity. Egypt Rheumatol. 2019;41(2):99–103. https://linkinghub.elsevier.com/retrieve/pii/S1110116418300905.

  91. Mirsattari D, Seyyedmajidi M, Zojaji H, Haghazali M, Orimi PG, Shoushtarizadeh T, et al. The relation between the level of interleukin-23 with duration and severity of ulcerative colitis. Gastroenterol Hepatol. 2012;5(1):49–53. https://www.ncbi.nlm.nih.gov/pubmed/24834198.

  92. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198(12):1951–7. https://www.ncbi.nlm.nih.gov/pubmed/14662908.

  93. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Investig. 2006;116(5):1310–6. https://www.ncbi.nlm.nih.gov/pubmed/16670770.

  94. Zwiers A, Kraal L, van de Pouw Kraan TCTM, Wurdinger T, Bouma G, Kraal G. Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;188(4):1573–7. https://doi.org/10.4049/jimmunol.1101494.

    Article  CAS  PubMed  Google Scholar 

  95. Peng L-L, Wang Y, Zhu F-L, Xu W-D, Ji X-L, Ni J. IL-23R mutation is associated with ulcerative colitis: a systemic review and meta-analysis. Oncotarget. 2017;8(3):4849–63. https://www.ncbi.nlm.nih.gov/pubmed/27902482.

  96. Abdollahi E, Tavasolian F, Momtazi-Borojeni AA, Samadi M, Rafatpanah H. Protective role of R381Q (rs11209026) polymorphism in IL-23R gene in immune-mediated diseases: a comprehensive review. J Immunotoxicol. 2016;13(3):286–300. https://www.ncbi.nlm.nih.gov/pubmed/27043356.

  97. Sivanesan D, Beauchamp C, Quinou C, Lee J, Lesage S, Chemtob S, et al. IL23R (interleukin 23 receptor) variants protective against inflammatory bowel diseases (IBD) display loss of function due to impaired protein stability and intracellular trafficking. J Biol Chem 2016;291(16):8673–85. https://www.ncbi.nlm.nih.gov/pubmed/26887945.

  98. Machado Á, Torres T. Guselkumab for the treatment of psoriasis. BioDrugs. 2018;32(2):119–28. https://doi.org/10.1007/s40259-018-0265-6.

    Article  CAS  PubMed  Google Scholar 

  99. Smolen JS, Agarwal SK, Ilivanova E, Xu XL, Miao Y, Zhuang Y, et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann Rheum Dis. 2017;76(5):831–9. https://www.ncbi.nlm.nih.gov/pubmed/28087506.

  100. Taylor PC, Keystone EC, van der Heijde D, Weinblatt ME, del Morales Carmen L, Reyes Gonzaga J, et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N Engl J Med. 2017;376(7):652–62. https://doi.org/10.1056/NEJMoa1608345.

    Article  CAS  PubMed  Google Scholar 

  101. Papp KA, Menter MA, Raman M, Disch D, Schlichting DE, Gaich C, et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2016;174(6):1266–76. https://www.ncbi.nlm.nih.gov/pubmed/26800231.

  102. Motoya S, Watanabe M, Kim HJ, Kim YH, Han DS, Yuasa H, et al. Tofacitinib induction and maintenance therapy in East Asian patients with active ulcerative colitis: subgroup analyses from three phase 3 multinational studies. Intest Res. 2018;16(2):233. https://doi.org/10.5217/ir.2018.16.2.233.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sands BE, Sandborn WJ, Feagan BG, Lichtenstein GR, Zhang H, Strauss R, et al. Peficitinib, an oral Janus kinase inhibitor, in moderate-to-severe ulcerative colitis: results from a randomised, phase 2 study. J Crohn’s Colitis. 2018;12(10):1158–69. https://academic.oup.com/ecco-jcc/article/12/10/1158/5038906.

  104. O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72(suppl 2):2111–5. https://doi.org/10.1136/annrheumdis-2012-202576.

    Article  CAS  Google Scholar 

  105. Gordon KB, Strober B, Lebwohl M, Augustin M, Blauvelt A, Poulin Y, et al. Efficacy and safety of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2): results from two double-blind, randomised, placebo-controlled and ustekinumab-controlled phase 3 trials. Lancet. 2018;392(10148):650–61. https://linkinghub.elsevier.com/retrieve/pii/S0140673618317136.

  106. Hibi T, Imai Y, Murata Y, Matsushima N, Zheng R, Gasink C. Efficacy and safety of ustekinumab in Japanese patients with moderately to severely active Crohn’s disease: a subpopulation analysis of phase 3 induction and maintenance studies. Intest Res. 2017;15(4):475. https://doi.org/10.5217/ir.2017.15.4.475.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Danese S, Sands BE, O’Brien CD, Zhang H, Johanns J, Sloan S, et al. DOP54 efficacy and safety of ustekinumab through Week 16 in patients with moderate-to-severe ulcerative colitis randomised to ustekinumab: results from the UNIFI induction trial. J Crohn’s Colitis. 2019;13(Supplement_1):S061–2. https://academic.oup.com/ecco-jcc/article/13/Supplement_1/S061/5301143.

  108. Feagan BG, Sandborn WJ, D’Haens G, Panés J, Kaser A, Ferrante M, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet. 2017;389(10080):1699–709. https://linkinghub.elsevier.com/retrieve/pii/S0140673617305706.

  109. Bangert C, Kopp T. Tildrakizumab for the treatment of psoriasis. Immunotherapy. 2018;10(13):1105–22. https://linkinghub.elsevier.com/retrieve/pii/S019096221831795X.

  110. Reich K, Rich P, Maari C, Bissonnette R, Leonardi C, Menter A, et al. Efficacy and safety of mirikizumab (LY3074828) in the treatment of moderate-to-severe plaque psoriasis: results from a randomised phase 2 study. Br J Dermatol. 2019. https://www.ncbi.nlm.nih.gov/pubmed/30734266.

  111. Sandborn WJ, Ferrante M, Bhandari R, D’Haens G, Berliba E, Feagan BG, et al. P033 Efficacy of mirikizumab on health-related quality of life in patients with ulcerative colitis: a randomised, double-blind, controlled, phase 2 study. Gastroenterology. 2019;156(3):S23. https://linkinghub.elsevier.com/retrieve/pii/S0016508519301489.

  112. Sands BE, Chen J, Feagan BG, Penney M, Rees WA, Danese S, et al. Efficacy and safety of MEDI2070, an antibody against interleukin 23, in patients with moderate to severe Crohn’s disease: a phase 2a study. Gastroenterology. 2017;153(1):77–86. https://linkinghub.elsevier.com/retrieve/pii/S001650851735401X.

  113. Zhang J, Tsai T-F, Lee M-G, Zheng M, Wang G, Jin H, et al. The efficacy and safety of tofacitinib in Asian patients with moderate to severe chronic plaque psoriasis: a phase 3, randomized, double-blind, placebo-controlled study. J Dermatol Sci. 2017;88(1):36–45. https://linkinghub.elsevier.com/retrieve/pii/S0923181117305005.

  114. Takeuchi T, Yamanaka H, Yamaoka K, Arai S, Toyoizumi S, DeMasi R, et al. Efficacy and safety of tofacitinib in Japanese patients with rheumatoid arthritis by background methotrexate dose: a post hoc analysis of clinical trial data. Mod Rheumatol. 2019;29:1–11. https://doi.org/10.1080/14397595.2018.1553489.

    Article  CAS  Google Scholar 

  115. Panés J, Sandborn WJ, Schreiber S, Sands BE, Vermeire S, D’Haens G, et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut. 2017;66(6):1049–59. https://doi.org/10.1136/gutjnl-2016-312735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Papp K, Pariser D, Catlin M, Wierz G, Ball G, Akinlade B, et al. A phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 2015;173(3):767–76. https://doi.org/10.1111/bjd.13745.

    Article  CAS  PubMed  Google Scholar 

  117. Takeuchi T, Tanaka Y, Iwasaki M, Ishikura H, Saeki S, Kaneko Y. Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann Rheum Dis. 2016;75(6):1057–64. https://www.ncbi.nlm.nih.gov/pubmed/26672064.

  118. Kljavin N, Gurney AL, Chen Q, Ghilardi N, de Sauvage FJ, Lucas S. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J Immunol. 2014;172(5):2827–33.

    Google Scholar 

  119. Kim B-J, Lee S, Berg RE, Simecka JW, Jones HP. Interleukin-23 (IL-23) deficiency disrupts Th17 and Th1-related defenses against Streptococcus pneumoniae infection. Cytokine. 2013;64(1):375–81. https://www.ncbi.nlm.nih.gov/pubmed/23752068.

  120. CHMP. Guideline on immunogenicity assessment of biotechnology derived therapeutic proteins. 2008;(December 2007). https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-biotechnology-derived-therapeutic-proteins-first-version_en.pdf.

  121. Wan H. An overall comparison of small molecules and large biologics in ADME testing. ADMET DMPK. 2016;4(1):1.

    Article  Google Scholar 

  122. Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10.

    Article  CAS  Google Scholar 

  123. Santos ML dos, Quintilio W, Manieri TM, Tsuruta LR, Moro AM. Advances and challenges in therapeutic monoclonal antibodies drug development. Braz J Pharm Sci. 2018;54(spe):1–15. https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-82502018000700406&lng=en&tlng=en.

  124. van Schie KA, Wolbink GJ, Rispens T. Cross-reactive and pre-existing antibodies to therapeutic antibodies—effects on treatment and immunogenicity. MAbs. 2015;7(4):662–71.

    Article  Google Scholar 

  125. Pratt K. Anti-drug antibodies: emerging approaches to predict, reduce or reverse biotherapeutic immunogenicity. Antibodies. 2018;7(2):19.

    Article  CAS  Google Scholar 

  126. Chiu H-Y, Chu TW, Cheng Y-P, Tsai T-F. The association between Clinical response to ustekinumab and immunogenicity to ustekinumab and prior adalimumab. PLoS One. 2015;10(11):e0142930. https://www.ncbi.nlm.nih.gov/pubmed/26566272.

  127. Khalilieh S, Hodsman P, Xu C, Tzontcheva A, Glasgow S, Montgomery D. Pharmacokinetics of tildrakizumab (MK-3222), an anti-IL-23 monoclonal antibody, after intravenous or subcutaneous administration in healthy subjects. Basic Clin Pharmacol Toxicol [Internet]. 2018;123(3):294–300. https://www.ncbi.nlm.nih.gov/pubmed/29510001.

  128. Machado Á, Torres T. Spotlight on risankizumab and its potential in the treatment of plaque psoriasis: evidence to date. Psoriasis (Auckland, NZ). 2018;8:83–92. https://www.ncbi.nlm.nih.gov/pubmed/30519540.

  129. Tzellos T, Kyrgidis A, Trigoni A, Zouboulis CC. Association of ustekinumab and briakinumab with major adverse cardiovascular events: an appraisal of meta-analyses and industry sponsored pooled analyses to date. Dermato-endocrinology. 2012;4(3):320–3. https://www.ncbi.nlm.nih.gov/pubmed/23467502.

  130. Guo W, Luo C, Wang C, Zhu Y, Wang X, Gao X, et al. Protection against Th17 cells differentiation by an interleukin-23 receptor cytokine-binding homology region. PLoS ONE. 2012;7(9):e45625. https://doi.org/10.1371/journal.pone.0045625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Briggs JP, Kriz W, Schnermann JB. Overview of kidney function and structure. In: National Kidney Foundation Primer on Kidney Diseases [Internet]. Elsevier; 2014. p. 2–18. https://linkinghub.elsevier.com/retrieve/pii/B9781455746170000017.

  132. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, et al. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem. 2004;279(8):6213–6. https://www.ncbi.nlm.nih.gov/pubmed/14699147.

  133. Suen KF, Turner MS, Gao F, Liu B, Althage A, Slavin A, et al. Transient expression of an IL-23R extracellular domain Fc fusion protein in CHO vs. HEK cells results in improved plasma exposure. Protein Expr Purif. 2010;71(1):96–102. https://doi.org/10.1016/j.pep.2009.12.015.

    Article  CAS  PubMed  Google Scholar 

  134. Gao Y, Bian Z, Xue W, Li Q, Zeng Y, Wang Y, et al. Human IL-23R cytokine-binding homology region-Fc fusion protein ameliorates psoriasis via the decrease of systemic Th17 and ILC3 cell responses. Int J Mol Sci. 2019;20(17):4170.

    Article  Google Scholar 

  135. Pechtner V, Karanikas CA, Garcia-Perez LE, Glaesner W. A new approach to drug therapy: Fc-fusion technology. Prim Health Care Open Access. 2017;07(01):1–5. https://www.omicsgroup.org/journals/a-new-approach-to-drug-therapy-fcfusion-technology-2167-1079-1000255.php?aid=87125.

  136. Lakhin AV, Tarantul VZ, Gening L V. Aptamers: problems, solutions and prospects. Acta Naturae. 2013;5(4):34–43. https://www.ncbi.nlm.nih.gov/pubmed/24455181.

  137. Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T. Aptamer therapeutics in cancer: current and future. Cancers (Basel). 2018;10(3). https://www.ncbi.nlm.nih.gov/pubmed/29562664.

  138. Boshtam M, Asgary S, Kouhpayeh S, Shariati L, Khanahmad H. Aptamers against pro- and anti-inflammatory cytokines: a review. Inflammation. 2017;40(1):340–9. https://doi.org/10.1007/s10753-016-0477-1.

    Article  CAS  PubMed  Google Scholar 

  139. Neil J, Killough J, Williams AC, Lenn JD, Cote-Sierra J, Rubenstein D, et al. RNA Aptamer delivery through intact human skin. J Investig Dermatol. 2017;138(2):282–90. https://doi.org/10.1016/j.jid.2017.07.851.

    Article  CAS  PubMed  Google Scholar 

  140. Bompiani KM, Monroe DM, Church FC, Sullenger BA. A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity. J Thromb Haemost. 2012;10(5):870–80. https://www.ncbi.nlm.nih.gov/pubmed/22385910.

  141. Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med. 2011;208(3):577–92. https://www.ncbi.nlm.nih.gov/pubmed/21383057.

  142. Li N, Xu W, Yuan Y, Ayithan N, Imai Y, Wu X, et al. Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Sci Rep. 2017;7(1):1485. https://www.nature.com/articles/s41598-017-01411-1.

  143. Brereton CF, Sutton CE, Lalor SJ, Lavelle EC, Mills KHG. Inhibition of ERK MAPK suppresses IL-23- and IL-1-driven IL-17 production and attenuates autoimmune disease. J Immunol. 2009;183(3):1715–23. https://www.ncbi.nlm.nih.gov/pubmed/19570828.

  144. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S, et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 2014;74(7):1924–32. https://www.ncbi.nlm.nih.gov/pubmed/24691993.

  145. Bäumer N, Appel N, Terheyden L, Buchholz F, Rossig C, Müller-Tidow C, et al. Antibody-coupled siRNA as an efficient method for in vivo mRNA knockdown. Nat Protoc. 2016;11(1):22–36.

    Article  Google Scholar 

  146. Bäumer N, Berdel WE, Bäumer S. Immunoprotein-mediated siRNA delivery. Mol Pharm. 2017;14(5):1339–511. https://doi.org/10.1021/acs.molpharmaceut.6b01039.

    Article  CAS  PubMed  Google Scholar 

  147. Hannus M, Beitzinger M, Engelmann JC, Weickert M-T, Spang R, Hannus S, et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res 2014;42(12):8049–61. https://www.ncbi.nlm.nih.gov/pubmed/24875475.

Download references

Acknowledgements

The research was funded by Universiti Sains Malaysia, Research University Individual Grant Scheme (RUI: 1001/CIPPM/8012334) and Ministry of Higher Education Malaysia, Higher Institution Centre of Excellence (HICoE: 311/CIPPM/4401005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gee Jun Tye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdo, A.I.K., Tye, G.J. Interleukin 23 and autoimmune diseases: current and possible future therapies. Inflamm. Res. 69, 463–480 (2020). https://doi.org/10.1007/s00011-020-01339-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01339-9

Keywords

Navigation