Skip to main content
Log in

Generalized Non-dimensional Wind and Temperature Gradients in the Surface Layer

  • Notes and Comments
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We propose a single generalized function for dimensionless wind and temperature gradients in stable and unstable conditions based on Monin–Obukhov similarity theory. The proposed function may be matched with the currently accepted universal functions for the dimensionless wind-speed and temperature gradients using the empirical coefficients a and b to yield differences within ± 14% for both wind and temperature gradients in the interval of \(-2\) < z/L < 0.5 (z is height and L is the Obukhov length). In neutral conditions, wind and temperature profiles are the same as the standard log-law profile. Under unstable conditions, the differences are smaller than 1.5%; conversely, under stable conditions, the differences reach up to \(-~5.2\)%. The coefficients a and b are analyzed here to evaluate the limits of this proposed semi-empirical function and possible physical characteristics are discussed. Although we use the same theoretical assumptions and limitations of Monin–Obukhov similarity theory in the surface layer, the proposed function has the flexibility of adjusting the wind and temperature gradients for specific sites using the empirical coefficients a and b within the range 0–1, with stable and unstable conditions able to be described by a single general function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Basu S, Lacser A (2017) A cautionary note on the use of Monin–Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol 163(2):351–355

    Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol 30(3):327–341

    Google Scholar 

  • Boersma S, Doekemeijer BM, Gebraad PMO, Fleming PA, Annoni J, Scholbrock AK, Frederik JA, van Wingerden J (2017) A tutorial on control-oriented modeling and control of wind farms. In: 2017 American control conference (ACC), pp 1–18

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Google Scholar 

  • Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine R, Wilson RB, Lee RF, Peters WD, Brode RW (2005) Aermod: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization. J Appl Meteorol 44(5):682–693

    Google Scholar 

  • Clarke RH, Dyer AJ, Brook R, Reid DG, Troup AJ (1971) The Wangara experiment: boundary layer data. C.S.I.R.O Melbourne

  • Coleman T, Li Y (1996) An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6(2):418–445

    Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7(3):363–372

    Google Scholar 

  • Ellison TH (1957) Turbulent transport of heat and momentum from an infinite rough plane. J Fluid Mech 2(5):456–466

    Google Scholar 

  • Emeis S (2018) Wind energy meteorology. Green energy and technology. Springer, Berlin

    Google Scholar 

  • Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119(3):431–447

    Google Scholar 

  • Foken T (2017) Micrometeorology. Springer, Berlin

    Google Scholar 

  • Foken T, Skeib G (1983) Profile measurements in the atmospheric near-surface layer and the use of suitable universal functions for the determination of the turbulent energy exchange. Boundary-Layer Meteorol 25(1):55–62

    Google Scholar 

  • Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J Roy Meteorol Soc 106(450):803–819

    Google Scholar 

  • Garratt JR, Taylor PA (1996) Boundary-layer meteorology 25th anniversary volume, 1970–1995: invited reviews and selected contributions to recognise Ted Munn’s contribution as editor over the past 25 years. Springer, Netherlands

  • Gryning SE, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol 124(2):251–268

    Google Scholar 

  • Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Boundary-Layer Meteorol 91(2):165–189

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42(1–2):55–78

    Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78(3–4):215–246

    Google Scholar 

  • International Electrotechnical Commission (2017) Wind energy generation systems—part 12–1: power performance measurements of electricity producing wind turbines- IEC 61400–12-1:2017, 2nd edn. International Electrotechnical Commission, Geneva, Switzerland

  • Izumi Y (1971) Kansas 1968 field program data report. Air Force Cambridge Research Laboratories, Air Force Systems Command, United States Air Force

  • Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140(3):898–918

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Haugen DA, Coté OR, Izumi Y, Caughey SJ, Readings CJ (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33(11):2152–2169

    Google Scholar 

  • Kazansky AB, Monin AS (1956) Turbulence in the inversion layer near the surface. Izv Akad Nauk SSSR Ser Geofiz 1(11):79–86

    Google Scholar 

  • LeMone MA, Angevine WM, Bretherton CS, Chen F, Dudhia J, Fedorovich E, Katsaros KB, Lenschow DH, Mahrt L, Patton EG, Sun J, Tjernström M, Weil J (2018) 100 years of progress in boundary layer meteorology. Meteorol Mono 59:9.1–9.85

    Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol 17(2):187–202

    Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90(3):375–396

    Google Scholar 

  • Mann J, Angelou N, Arnqvist J, Callies D, Cantero E, Arroyo RC, Courtney M, Cuxart J, Dellwik E, Gottschall J, Ivanell S, Kühn P, Lea G, Matos JC, Palma JMLM, Pauscher L, Peña A, Rodrigo JS, Söderberg S, Vasiljevic N, Rodrigues CV (2017) Complex terrain experiments in the new European wind Atlas. Phil Trans Roy Soc A Math Phys Eng Sci 375(2091):20160,101

    Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Trudy Geofiz Inst AN SSSR 24(151):163–187

    Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14):2202–2216

    Google Scholar 

  • Panofsky HA (1963) Determination of stress from wind and temperature measurements. Q J Roy Meteorol Soc 89(379):85–94

    Google Scholar 

  • Porté-Agel F, Bastankhah M, Shamsoddin S (2020) Wind-turbine and wind-farm flows: a review. Boundary-Layer Meteorol 174:1–59

    Google Scholar 

  • Priestley CHB, Panofsky HA (1961) An alternative derivation of the diabatic wind profile. Q J Roy Meteorol Soc 87(373):437–438

    Google Scholar 

  • Raupach MR, Thom AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol 18(4):373–397

    Google Scholar 

  • Santos P, Mann J, Vasiljevic N, Courtney M, Sanz Rodrigo J, Cantero E, Borbón F, Martínez-Villagrasa D, Martí B, Cuxart J (2019) The alaiz experiment (alex17): wind field and turbulent fluxes in a large-scale and complex topography with synoptic forcing. https://doi.org/10.11583/DTU.c.4508597.v1

  • Sellers WD (1962) A simplified derivation of the diabatic wind profile. J Atmos Sci 19(2):180–181

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Liu Z, Berner J, Wang W, Powers JG, Duda MG, Barker DM, Huang XY (2019) A description of the advanced research WRF version 4. NCAR technical note pp TN-556STR. University Corporation for Atmospheric Research

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tennekes H (1982) Similarity relations, scaling laws and spectral dynamics. Springer, Dordrecht, pp 37–68

    Google Scholar 

  • Veers P, Dykes K, Lantz E, Barth S, Bottasso CL, Carlson O, Clifton A, Green J, Green P, Holttinen H, Laird D, Lehtomäki V, Lundquist JK, Manwell J, Marquis M, Meneveau C, Moriarty P, Munduate X, Muskulus M, Naughton J, Pao L, Paquette J, Peinke J, Robertson A, Sanz Rodrigo J, Sempreviva AM, Smith JC, Tuohy A, Wiser R (2019) Grand challenges in the science of wind energy. Science 366(6464):eaau2027

    Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J Roy Meteorol Soc 96(407):67–90

    Google Scholar 

  • Wilson DK (2001) An alternative function for the wind and temperature gradients in unstable surface layers. Boundary-Layer Meteorol 99(1):151–158

    Google Scholar 

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, New York

    Google Scholar 

  • Yamamoto G (1959) Theory of turbulent transfer in non-neutral conditions. J Meteorol Soc Jpn 37(2):60–70

    Google Scholar 

  • Zhao M, Golaz JC, Held IM, Guo H, Balaji V, Benson R, Chen JH, Chen X, Donner LJ, Dunne JP, Dunne K, Durachta J, Fan SM, Freidenreich SM, Garner ST, Ginoux P, Harris LM, Horowitz LW, Krasting JP, Langenhorst AR, Liang Z, Lin P, Lin SJ, Malyshev SL, Mason E, Milly PCD, Ming Y, Naik V, Paulot F, Paynter D, Phillipps P, Radhakrishnan A, Ramaswamy V, Robinson T, Schwarzkopf D, Seman CJ, Shevliakova E, Shen Z, Shin H, Silvers LG, Wilson JR, Winton M, Wittenberg AT, Wyman B, Xiang B (2018) The GFDL global atmosphere and land model am4.0/lm4.0: 2. model description, sensitivity studies, and tuning strategies. J Adv Model Earth Syst 10(3):735–769

    Google Scholar 

  • Zilitinkevich SS, Chalikov DV (1968) Determination of universal wind and temperature profiles in the atmospheric surface layer. Fiz Atm i Okeana 4:294–302

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Brazilian Electricity Regulatory Agency (ANEEL) under the project 0403-0020/2011, funded by ENGIE Brasil Energia Company. Particular thanks to Frederico F. Taves for his collaborations in this project and Pedro Santos for reviewing the manuscript and the deep discussions that contributed to improve this paper. Furthermore, we thank the many colleagues who gave us many suggestions by email, and the three anonymous reviewers for their valuable time and wise comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Sakagami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakagami, Y., Haas, R. & Passos, J.C. Generalized Non-dimensional Wind and Temperature Gradients in the Surface Layer. Boundary-Layer Meteorol 175, 441–451 (2020). https://doi.org/10.1007/s10546-020-00510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00510-3

Keywords

Navigation