Skip to main content
Log in

Laser ablation ICP-MS trace element systematics of hydrothermal pyrite in gold deposits of the Kalgoorlie district, Western Australia

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Kalgoorlie district in the Archean Yilgarn Craton of Western Australia contains two world-class gold deposits: the giant Golden Mile shear-zone system and the Mt Charlotte quartz-vein stockworks. Mineralization occurs in three styles: (a) Fimiston style is characterized by ankerite-pyrite ± hematite-magnetite-gold replacement, (b) Oroya style overprints Fimiston ore in the shear zones and is characterized by silica-ankerite-V-muscovite-pyrite ± pyrrhotite-gold-telluride replacement and (c) Mt. Charlotte style is characterized by veins with ankerite-sericite ± albite-pyrite-pyrrhotite-gold selvages. Hydrothermal pyrite is ubiquitous in all styles and occurs in several stages. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) spot analyses (n = 652) were collected on 54 representative samples of pyrite from three deposits. Smooth sections in the ablation spectra were selected for quantitative analysis excluding peaks caused by micron-sized inclusions. Linear mixed effects (LME) modeling of the analytical results indicates no systematic differences between the Fimiston, Oroya and Mt Charlotte styles. The variance introduced to the dataset by geological variability reflected in random differences between samples and deposits is large. This may be a major reason for difficulties in distinguishing the differences due to mineralization style. However, there are clear differences between pyrites co-existing with different mineral assemblages. These indicate a strong control on pyrite chemistry by the composition of the hydrothermal fluids. Finally, Au-Te-As systematics show that a substantial proportion of the analyzed pyrites in all deposits fall into the field of gold saturation consistent with the known metallurgical character of the ores. Mineralogical studies, ultra-fine grinding and recovery by cyanide leach show that > 82% of all gold is present in native grains or in Au-Ag-tellurides. The refractory nature of the Fimiston pyrite concentrates is due to clusters of micron- to nano-sized inclusions rather than due to abundant lattice-bound gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bateman R, Hagemann SG (2004) Gold mineralisation throughout about 45 Ma of Archaean orogenesis: protracted flux of gold in the Golden Mile, Yilgarn craton, Western Australia Mineralium Deposita 39:536–559 doi:https://doi.org/10.1007/s00126-004-0431-2

  • Bateman RJ, Hagemann SG, McCuaig TC, Swager CP (2001) Protracted gold mineralization throughout Archaean orogenesis in the Kalgoorlie camp, Yilgarn Craton, Western Australia: structural, mineralogical, and geochemical evolution. Geological Survey of Western Australia, Record 2001/17, pp 63–98

  • Bates DM, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bauer ME, Burisch M, Ostendorf J, Krause J, Frenzel M, Seifert T, Gutzmer J (2019) Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineral Deposita 54:237–262. https://doi.org/10.1007/s00126-018-0850-0

    Article  Google Scholar 

  • Belousov I, Large R, Meffre S, Danyushevsky L, Steadman J, Beardsmore T (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: implications for gold and copper exploration. Ore Geol Rev 79:474–499. https://doi.org/10.1016/j.oregeorev.2016.04.020

    Article  Google Scholar 

  • Champion DC, Cassidy KF (2007) An overview of the Yilgarn Craton and its crustal evolution. In: Bierlin FP Knox-Robinson CP (eds). Proceedings of Geoconferences (WA) Inc. Kalgoorlie 07’ Conference. Geoscience Australia Record 2007/14, pp. 13–35

  • Champion DC, Sheraton JW (1997) Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambrian Res 83:109–132

    Article  Google Scholar 

  • Claoué-Long JC, Compston W, Cowden A (1988) The age of the Kambalda greenstones resolved by ion-microprobe: implications for Archaean dating methods. Earth Planet Sci Lett 89:239–259. https://doi.org/10.1016/0012-821X(88)90175-6

    Article  Google Scholar 

  • Clark ME (1980) Localization of gold, Mt Charlotte, Kalgoorlie,Western Australia. B.Sc. (Hns.) thesis, the University of Western Australia

  • Clout JMF (1989) Structural and isotopic studies of the Golden Mile gold–telluride deposit, Kalgoorlie, WA. Monash University, PhD thesis

  • Clout JMF, Cleghorn JH, Eaton PC (1990) Geology of the Kalgoorlie goldfield. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Melbourne, Australasian Inst min Metall, monograph 14, pp 411–431

  • Czarnota K, Champion DC, Goscombe B, Blewett RS, Cassidy KF, Henson PA, Groenewald PB (2010) Geodynamics of the eastern Yilgarn Craton Precambrian Research 183:175–202 doi:https://doi.org/10.1016/j.precamres.2010.08.004

  • Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana C, Becker U, Kesler SE (2008) A proposed new type of arsenian pyrite: composition, nanostructure and geological significance. Geochim Cosmochim Acta 72:2919–2933. https://doi.org/10.1016/j.gca.2008.03.014

    Article  Google Scholar 

  • Deditius AP, Utsunomiya S, Reich M, Kesler SE, Ewing RC, Hough R, Walshe J (2011) Trace metal nanoparticles in pyrite. Ore Geol Rev 42:32–46

    Article  Google Scholar 

  • Deditius AP, Reich M, Kesler SE, Utsunomiya S, Chryssoulis SL, Walshe J, Ewing RC (2014) The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim Cosmochim Acta 140:644–670. https://doi.org/10.1016/j.gca.2014.05.045

    Article  Google Scholar 

  • Ding L et al (2011) A LA-ICP-MS sulphide calibration standard based on a chalcogenide glass. Mineral Mag 75:279–287. https://doi.org/10.1180/minmag.2011.075.2.279

    Article  Google Scholar 

  • Dmitrijeva M, Metcalfe AV, Ciobanu CL, Cook NJ, Frenzel M, Keyser WM, Johnson G, Ehrig K (2018) Discrimination and variance structure of trace element signatures in Fe-oxides: a case study of BIF-mineralisation from the Middleback ranges, South Australia. Math Geosci 50:381–415. https://doi.org/10.1007/s11004-018-9734-1

    Article  Google Scholar 

  • Dunga J (2015) Hydrothermal alteration mineralogy, texture and zoning at the Union Club open pit in the Mt. Percy gold deposit, Golden Mile, Western Australia. MSc thesis, the University of Western Australia

  • Finucane KJ (1948) Ore distribution and lode structures in the Kalgoorlie Goldfield. Proceedings of the Australasian Institute of Mining and Metallurgy 148:111–129

    Google Scholar 

  • Franchini M, McFarlane C, Maydagan L, Reich M, Lentz DR, Meinert L, Bouhier V (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol Rev 66:366–387. https://doi.org/10.1016/j.oregeorev.2014.10.022

    Article  Google Scholar 

  • Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—a meta-analysis. Ore Geol Rev 76:52–78. https://doi.org/10.1016/j.oregeorev.2015.12.017

    Article  Google Scholar 

  • Frenzel M, Bachmann K, Carvalho JRS, Relvas JMRS, Pacheco N, Gutzmer J (2019) The geometallurgical assessment of by-products—geochemical proxies for the complex mineralogical deportment of indium at Neves-Corvo. Portugal Mineralium Deposita 54:959–982. https://doi.org/10.1007/s00126-018-0849-6

    Article  Google Scholar 

  • Godefroy-Rodríguez M, Hagemann S, LaFlamme C, Fiorentini ML (2018) The multiple sulphur isotope architecture of the Golden mile deposit, Western Australia Mineralium Deposita doi:https://doi.org/10.1007/s00126-018-0828-y, 1, 26

  • Golding LY (1978) Mineralogy, geochemistry and origin of the Kalgoorlie gold deposits, Western Australia. PhD thesis, University of Melbourne

  • Gregory DD et al (2016) Trace element content of pyrite from the Kapai Slate, St. Ives Gold District, Western Australia. Econ Geol 111:1297–1320. https://doi.org/10.2113/econgeo.111.6.1297

    Article  Google Scholar 

  • Gregory DD et al (2019) Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Econ Geol 114:771–786. https://doi.org/10.5382/econgeo.4654

    Article  Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a matlab-based program for the reduction of laser ablation ICP–MS data of homogeneous materials and inclusions vol 40. Laser ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Asssociation of Canada, British Columbia

  • Harbi H (1997) Origin of the stockwork mineralisation at Kalgoorlie, Western Australia. PhD thesis, the University of Western Australia

  • Haycraft JA (1979) Estimation of gold ore reserves at Mt. Charlotte, Kalgoorlie, Western Australia: estimation and statement of mineral reserves, Australasian Institute of Mining and Metallurgy, Sydney Branch, October 1979, Proceedings, p. 155–165

  • Keith M, Smith DJ, Jenkin GR, Holwell DA, Dye MD (2018) A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol Rev 96:269–282. https://doi.org/10.1016/j.oregeorev.2017.07.023

    Article  Google Scholar 

  • Kusebauch C, Oelze M, Gleeson SA (2018) Partitioning of arsenic between hydrothermal fluid and pyrite during experimental siderite replacement. Chem Geol 500:136–147. https://doi.org/10.1016/j.chemgeo.2018.09.027

    Article  Google Scholar 

  • Larcombe COG (1913) The geology of Kalgoorlie (Western Australia), with special reference to the ore deposits. Australasian Institute of Mining and Engenieering, Melbourne Monograph, 315 pp

  • Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi log deposit, Lena gold province. Russia Economic Geology 102:1233–1267. https://doi.org/10.2113/gsecongeo.102.7.1233

    Article  Google Scholar 

  • Large RR et al (2009) Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104:635–668. https://doi.org/10.2113/gsecongeo.104.5.635

    Article  Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics methods in ecology and. Evolution 7:573–579

    Google Scholar 

  • Lindgren W (1906) Metasomatic processes in the gold deposits of Western Australia. Econ Geol 1:530–544

    Article  Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Article  Google Scholar 

  • Lungan A (1986) The structural controls of the Oroya shoot: implications for the structure of the Kalgoorlie region, Western Australia. B.Sc (Hns) thesis, the University of Western Australia

  • Michel D, Giuliani G, Olivo RG, Marini OJ (1994) As growth banding and the presence of au in pyrites from the Santa Rita gold vein deposit hosted in Proterozoic metasediments,Goias State. Brazil Economic Geology 89:193–200. https://doi.org/10.2113/gsecongeo.89.1.193

    Article  Google Scholar 

  • Mikucki E, Heinrich C (1993) Vein-and mine-scale wall-rock alteration and gold mineralisation in the Archaean Mount Charlotte deposit, Kalgoorlie, Western Australia. Australian Geological Survey Organisation, Record 54:135–140

    Google Scholar 

  • Morey AA, Tomkins AG, Bierlein FP, Weinberg RF, Davidson GJ (2008) Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, Western Australia. Econ Geol 103:599. https://doi.org/10.2113/gsecongeo.103.3.599

    Article  Google Scholar 

  • Mueller AG (1990) The nature and genesis of high- and medium-temperature Archaean gold deposits in the Yilgarn block, Western Australia, including a specifics study of scheelite-bearing skarnd deposits. PhD thesis, the University of Western Australia

  • Mueller AG (2015) Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia: time constraints, down-plunge zonation, and fluid source. Mineral Deposita 50:221–244. https://doi.org/10.1007/s00126-014-0527-2

    Article  Google Scholar 

  • Mueller AG (2017) Structural setting of Fimiston- and Oroya-style pyrite-telluride-gold lodes, Paringa South mine, Golden Mile, Kalgoorlie: 1. Shear zone systems, porphyry dykes and deposit-scale alteration zones. Mineral Deposita:1–31. https://doi.org/10.1007/s00126-017-0747-3

  • Mueller AG (2018) Paragonite-chloritoid alteration in the Trafalgar fault and Fimiston- and Oroya-style gold lodes in the Paringa South mine, Golden Mile, Kalgoorlie: 2. Muscovite-pyrite and silica-chlorite-telluride ore deposited by two superimposed hydrothermal systems. Mineral Deposita:1–34. https://doi.org/10.1007/s00126-018-0813-5

  • Mueller AG, Muhling JR (2013) Silver-rich telluride mineralization at Mount Charlotte and Au–Ag zonation in the giant Golden Mile deposit, Kalgoorlie, Western Australia. Mineral Deposita 48:295–311. https://doi.org/10.1007/s00126-012-0425-4

    Article  Google Scholar 

  • Mueller AG, Muhling JR (2019) Early pyrite and late telluride mineralization in vanadium-rich gold ore from the Oroya Shoot, Paringa south mine, Golden Mile, Kalgoorlie: 3. Ore mineralogy, Pb-Te (Au-Ag) melt inclusions, and stable isotope constraints on fluid sources Mineralium Deposita doi:https://doi.org/10.1007/s00126-019-00876-6

  • Mueller AG, Harris LB, Lungan A (1988) Structural control of greenstone-hosted gold mineralization by transcurrent shearing: a new interpretation of the Kalgoorlie Mining District, Western Australia. Ore Geol Rev 3:359–387

    Article  Google Scholar 

  • Mueller AG, Hagemann SG, McNaughton NJ (2016) Neoarchean orogenic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineralization in the Boulder Lefroy-Golden Mile fault system. Mineral Deposita:1–31. https://doi.org/10.1007/s00126-017-0747-3

  • Mueller AG, Hagemann SG, Brugger J, Xing Y, Roberts MP (2020) Early Fimiston and late Oroya Au-Te ore, Paringa South mine, Golden Mile, Kalgoorlie: 4. Mineralogical and thermodynamic constraints on gold deposition by magmatic fluids at 420-300°C and 300 MPa. Mineral Deposita. https://doi.org/10.1007/s00126-019-00939-8

  • Neall FB (1985) The application of thermodynamics to the study of two Archean hydrothermal gold deposits in Western Australia. PhD thesis, the University of Western Australia

  • Nickel EH (1977) Mineralogy of the ‘green leader’ gold ore at Kalgoorlie, Western Australia Australia. Australasian Institute of Mining and Metallurgy Monograph 263:9–13

    Google Scholar 

  • Peterson EC, Mavrogenes JA (2014) Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology 42:383–386. https://doi.org/10.1130/G35286.1

    Article  Google Scholar 

  • Phillips GN (1986) Geology and alteration in the Golden Mile, Kalgoorlie. Econ Geol 81:779–808

    Article  Google Scholar 

  • Phillips GN, Gibb H (1993) A century of gold mining at Kalgoorlie. vol 45. Economic Geology Research Unit, Key Centre in Economic Geology, James Cook University of North Queensland

  • Pitcairn IK, Olivo GR, Teagle DA, Craw D (2010) Sulfide evolution during prograde metamorphism of the Otago and Alpine Schists,New Zealand. Can Mineral 48:1267–1295. https://doi.org/10.3749/canmin.48.5.1267

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accesed 07 August 2019

  • Ramdohr P (1980) The ore minerals and their intergrowths, Vol. 1 and Vol. 2. Oxford, Pergamon, 1207 pp.

  • Rasmussen B, Mueller AG, Fletcher IR (2009) Zirconolite and xenotime U–Pb age constraints on the emplacement of the Golden Mile Dolerite sill and gold mineralization at the Mt Charlotte mine, Eastern Goldfields Province, Yilgarn Craton, Western Australia. Mineral Deposita 157:559–572. https://doi.org/10.1007/s00410-008-0352-7

    Article  Google Scholar 

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis SL, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796. https://doi.org/10.1016/j.gca.2005.01.011

    Article  Google Scholar 

  • Rempel K, Stanley CJ (2016) IMA 2015-119 vol 80. Mineral Mag. https://doi.org/10.1180/minmag.2016.080.081

  • Román N, Reich M, Leisen M, Morata D, Barra F, Deditius AP (2019) Geochemical and micro-textural fingerprints of boiling in pyrite. Geochim Cosmochim Acta 246:60–85. https://doi.org/10.1016/j.gca.2018.11.034

    Article  Google Scholar 

  • Shackleton JM, Spry PG, Bateman R (2003) Telluride mineralogy of the golden mile deposit, Kalgoorlie, Western Australia. Can Mineral 41:1503–1524. https://doi.org/10.2113/gscanmin.41.6.1503

    Article  Google Scholar 

  • Spence-Jones CP, Gawen RTJ, Boyce AJ, Hill NJ, Sangster CJS (2018) Tellurium, magmatic fluids and orogenic gold: an early magmatic fluid pulse at Cononish gold deposit. Scotland Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2018.05.014

  • Spry P, Scherbarth N (2006) The gold–vanadium–tellurium association at the Tuvatu gold–silver prospect, Fiji: conditions of ore deposition. Mineral Petrol 87:171–186. https://doi.org/10.1007/s00710-006-0128-6

    Article  Google Scholar 

  • Spry PG, Chryssoulis SL, Ryan GC (2004) Process mineralogy of gold: gold from telluride-bearing ores the journal of the minerals. Metals & Materials Society 56:60–62. https://doi.org/10.1007/s11837-004-0185-4

    Article  Google Scholar 

  • Steadman JA, Large RR, Meffre S, Olin PH, Danyushevsky LV, Gregory DD, Holden P (2015) Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden mile deposit, Kalgoorlie, Western Australia. Econ Geol 110:1157–1191. https://doi.org/10.2113/econgeo.110.5.1157

    Article  Google Scholar 

  • Stillwell FL (1931) The occurrence of telluride minerals at Kalgoorlie. Proceedings of the Australasian Institute of Mining and Metallurgy 84:115–190

    Google Scholar 

  • Sung Y-H, Brugger J, Ciobanu C, Pring A, Skinner W, Nugus M (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: sunrise dam, Eastern Goldfields Province, Western Australia. Mineral Deposita 44:765. https://doi.org/10.1007/s00126-009-0244-4

    Article  Google Scholar 

  • Swager C (1989) Structure of Kalgoorlie greenstones-regional deformation history and implications for the structural setting of the Golden Mile gold deposits

  • Tomich SA (1959) The Oroya shoot and its relationship to other flatly plunging ore pipes at Kalgoorlie. Proceedings of the Australasian Institute of Mining and Metallurgy 190:113–124

    Google Scholar 

  • Travis GA, Woodall R, Bartram GD (1971) The geology of the Kalgoorlie goldfield. In Glover JE (ed) Symposisum on Archean rocks. Geological Society of Australia, Special Publication 3:175–190

  • Van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing compositional data with R vol 122. Springer. doi:https://doi.org/10.1007/978-3-642-36809-7

  • Velásquez G, Béziat D, Salvi S, Siebenaller L, Borisova AY, Pokrovski GS, Parseval P (2014) Formation and deformation of pyrite and implications for gold mineralization in the El Callao District,Venezuela. Econ Geol 109:457–486. https://doi.org/10.2113/econgeo.109.2.457

    Article  Google Scholar 

  • Vielreicher NM, Groves DI, Snee LW, Fletcher IR, McNaughton NJ (2010) Broad synchroneity of three gold mineralization styles in the Kalgoorlie Gold Field: SHRIMP, U-Pb, and 40Ar/39Ar Geochronological evidence. Econ Geol 105:187–227. https://doi.org/10.2113/gsecongeo.105.1.187

    Article  Google Scholar 

  • Ward J, Mavrogenes J, Murray A, Holden P (2017) Trace element and sulfur isotopic evidence for redox changes during formation of the Wallaby gold deposit,Western Australia. Ore Geol Rev 82:31–48. https://doi.org/10.1016/j.oregeorev.2016.11.011

    Article  Google Scholar 

  • White RW, Powell R, Phillips GN (2003) A mineral equilibria study of the hydrothermal alteration in mafic greenschist facies rocks at Kalgoorlie, Western Australia. J Metamorph Geol 21:455–468. https://doi.org/10.1046/j.1525-1314.2003.00454.x

    Article  Google Scholar 

  • Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom 17:406–409. https://doi.org/10.1039/B108787H

    Article  Google Scholar 

  • Winter B (2013) Linear models and linear mixed effects models in R with linguistic applications arXiv preprint arXiv:13085499

  • Witt WK, Cassidy KF, Lu Y, Hagemann S (2017) The tectonic setting and evolution of the 2.7 Ga Kalgoorlie-Kurnalpi rift, a world-class Archean gold province Mineralium Deposita doi:https://doi.org/10.1007/s00126-017-0778-9

  • Woodall R (1965) Structure of the Kalgoorlie goldfield. In: Andrew J (ed) Geology of Australian ore deposits 8th Commonwealth Min Metall Congress, Melbourne, pp 71–79

  • Xing Y, Brugger J, Tomkins A, Shvarov Y (2019) Arsenic evolution as a tool for understanding formation of pyritic gold ores. Geology 47:335–338. https://doi.org/10.1130/g45708.1

    Article  Google Scholar 

Download references

Acknowledgments

This research would not have been possible without a postgraduate scholarship from CONACYT (Consejo Nacional de Ciencia y Tecnología, Mexico). Samples, discussion and support from Andreas Mueller are greatly appreciated. The authors would like to acknowledge technical support at the Centre for Microscopy, Characterization and Analysis (CMCA), at the University of Western Australia. The GeoHistory Facility instruments in the John de Laeter Centre, Curtin University, were funded by an Australian Geophysical Observing System grant provided to AuScope Pty Ltd. by the AQ44 Australian Education Investment Fund program. The NPII multi-collector was funded by the Australian Research Council LIEF program (LE150100013). Discussion and comments from Daniel Gregory, Michael Tedeschi, Jessica Bogossian and Bertrand Rottier are equally acknowledged. Discussion and previous data compilations from Manuel Keith, Daniel Gregory, Ivan Belousov, Michael Tedeschi and Carolin Kresse were most valuable to compare the results of our study to those from other orogenic gold deposits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Godefroy-Rodríguez.

Additional information

Editorial handling: A. G. Mueller

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2089 kb)

ESM 2

(XLSX 365 kb)

ESM 3

(XLSX 595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godefroy-Rodríguez, M., Hagemann, S., Frenzel, M. et al. Laser ablation ICP-MS trace element systematics of hydrothermal pyrite in gold deposits of the Kalgoorlie district, Western Australia. Miner Deposita 55, 823–844 (2020). https://doi.org/10.1007/s00126-020-00958-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-00958-w

Keywords

Navigation