Skip to main content

Advertisement

Log in

First U-Pb LA-ICP-MS in situ dating of supergene copper mineralization: case study in the Chuquicamata mining district, Atacama Desert, Chile

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Since the second half of the twentieth century, exotic copper mineralization represents a prime target for many mining exploration companies operating in the hyperarid Atacama Desert, in northern Chile. Although there is evidence that the emplacement of such deposits took place during specific Tertiary climatic periods and relief formation, many uncertainties remain regarding the exact timing for their deposition and/or the genetic link between the exotic deposits and the primary porphyry copper deposits. We present a first attempt of U-Pb dating of copper-rich minerals from the Mina Sur exotic deposit from the Chuquicamata mining district. A suite of Mn-rich black chrysocolla clasts surrounded by pseudomalachite bands has been characterized and dated in petrographic context using both nanosecond and femtosecond in situ laser ablation ICP-MS analyses. U-Pb dating on pseudomalachite bands yields a crystallization age of 18.4 ± 1.0 Ma. For the Mn-rich chrysocolla clasts, the 206Pb/238U apparent ages range from 19.7 ± 5.0 Ma to 6.1 ± 0.3 Ma, a spread interpreted as the result of U and/or Pb mobility linked to fluid circulation following crystallization. This study demonstrates that supergene copper mineralization can be directly dated by the U-Th-Pb method on pseudomalachite. Furthermore, the age obtained on pseudomalachite indicates that Mina Sur copper deposition took place at ca. 19 Ma, about 11 m.y. after the unroofing and hydrothermal alteration of the Chuquicamata deposit, a result that is consistent with the supergene ages already known in the Atacama Desert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656. https://doi.org/10.1130/0016-7606(1988)100<1640:MMCCIT>2.3.CO;2

    Article  Google Scholar 

  • Amilibia A, Sàbat F, McClay KR et al (2008) The role of inherited tectono-sedimentary architecture in the development of the central Andean mountain belt: insights from the Cordillera de Domeyko. J Struct Geol 30:1520–1539. https://doi.org/10.1016/j.jsg.2008.08.005

    Article  Google Scholar 

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79. https://doi.org/10.1016/S0009-2541(02)00195-X

    Article  Google Scholar 

  • Arancibia G, Matthews SJ, Perez de Arce C (2006) K-Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, northern Chile: tectonic and climatic relations. J Geol Soc 163:107–118. https://doi.org/10.1144/0016-764904-161

    Article  Google Scholar 

  • Ballard JR, Palin JM, Williams IS et al (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383. https://doi.org/10.1130/0091-7613(2001)029<0383:TAOPIR>2.0.CO;2

    Article  Google Scholar 

  • Barra F, Alcota H, Rivera S, Valencia V, Munizaga F, Maksaev V (2013) Timing and formation of porphyry Cu–Mo mineralization in the Chuquicamata district, northern Chile: new constraints from the Toki cluster. Mineral Deposita 48:629–651. https://doi.org/10.1007/s00126-012-0452-1

    Article  Google Scholar 

  • Berry LG (1950) On pseudomalachite and Cornetite. Am Mineral 35:365–385

    Google Scholar 

  • Bissig T, Riquelme R (2010) Andean uplift and climate evolution in the southern Atacama Desert deduced from geomorphology and supergene alunite-group minerals. Earth Planet Sci Lett 299:447–457. https://doi.org/10.1016/j.epsl.2010.09.028

    Article  Google Scholar 

  • Bouzari F, Clark AH (2002) Anatomy, evolution, and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit, I Región, northern Chile. Econ Geol 97:1701–1740

    Article  Google Scholar 

  • Campbell IH, Ballard JR, Palin JM et al (2006) U-Pb zircon geochronology of granitic rocks from the Chuquicamata-El Abra porphyry copper belt of northern Chile: excimer laser ablation ICP-MS analysis. Econ Geol 101:1327–1344. https://doi.org/10.2113/gsecongeo.101.7.1327

    Article  Google Scholar 

  • Campos E, Menzies A, Sola S, et al (2015) Understanding exotic-Cu mineralisation: part I - characterisation of chrysocolla. In: 3:1153. 13th SGA Biennal meeting, Nancy, France

  • Chávez WX (2000) Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals. Society of Economic Geologists Newsletter 41:10–21

  • Chew DM, Petrus JA, Kamber BS (2014) U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem Geol 363:185–199. https://doi.org/10.1016/j.chemgeo.2013.11.006

    Article  Google Scholar 

  • Crane MJ, Sharpe JL, Williams PA (2001) Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Rec Aust Mus 53:49–56. https://doi.org/10.3853/j.0067-1975.53.2001.1323

    Article  Google Scholar 

  • Cuadra C, Zentilli P, Puig A, Tidy E (1997) Dataciones radiométricas recientes en Radomiro Tomic. Congreso Geologico Chileno, 8th, Antofagasta, pp 916–919

  • Dilles JH, Tomlinson AJ, García M, Alcota H (2011) The geology of the Fortuna Granodiorite Complex, Chuquicamata district, Northern Chile: relation to porphyry copper deposits. SGA Biennial Meeting 11th, Antofagasta, Chile, pp 399–401

  • Fam R, Rojas O (1997) Eventos de mineralizacion Exotica de Cu en el distrito de Chuquicamata, II region Chile. Congreso Geologico Chileno VIII, Antofagasta, pp 1923–1927

    Google Scholar 

  • Fernández-Mort A, Riquelme R, Alonso-Zarza AM, Campos E, Bissig T, Mpodozis C, Carretier S, Herrera C, Tapia M, Pizarro H, Muñoz S (2018) A genetic model based on evapoconcentration for sediment-hosted exotic-Cu mineralization in arid environments: the case of the El Tesoro central copper deposit, Atacama Desert, Chile. Mineral Deposita 53:775–795. https://doi.org/10.1007/s00126-017-0780-2

    Article  Google Scholar 

  • Foote HW, Bradley WM (1913) On solid solutions in minerals. IV. The composition of amorphous minerals as illustrated by chrysocolla. Am J Sci 36:180–184

    Article  Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912. https://doi.org/10.2113/gsecongeo.70.5.857

    Article  Google Scholar 

  • Hartley AJ, Rice CM (2005) Controls on supergene enrichment of porphyry copper deposits in the Central Andes: a review and discussion. Mineral Deposita 40:515–525. https://doi.org/10.1007/s00126-005-0017-7

    Article  Google Scholar 

  • Hiess J, Condon DJ, McLean N, Noble SR (2012) 238U/235U systematics in terrestrial uranium-bearing minerals. 335:6

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Lindsay DD, Zentilli M, Rivera JRDL (1995) Evolution of an active ductile to brittle shear system controlling mineralization at the Chuquicamata porphyry copper deposit, northern Chile. Int Geol Rev 37:945–958. https://doi.org/10.1080/00206819509465434

    Article  Google Scholar 

  • Ludwig KR (2008) Isoplot 3.6.4. Berkeley Geochronology Center special publication 4:1–77

  • Maksaev V, Zentilli M (1999) Fission track thermochronology of the Domeyko Cordillera, northern Chile: implications for Andean tectonics and porphyry copper metallogenesis. Explor Min Geol 8:65–89

    Google Scholar 

  • Marsh TM, Einaudi MT, McWilliams M (1997) 40Ar/39Ar geochronology of Cu-Au and Au-Ag mineralization in the Potrerillos District, Chile. Econ Geol 92:784–806

    Article  Google Scholar 

  • Mathur R, Ruiz J, Munizaga F (2000) Relationship between copper tonnage of Chilean base-metal porphyry deposits and Os isotope ratios. Geology 28:555–558

    Article  Google Scholar 

  • May G, Hartley AJ, Stuart FM, Chong G (1999) Tectonic signatures in arid continental basins: an example from the Upper Miocene–Pleistocene, Calama Basin, Andean forearc, northern Chile. Palaeogeogr Palaeoclimatol Palaeoecol 151:55–77. https://doi.org/10.1016/S0031-0182(99)00016-4

    Article  Google Scholar 

  • May G, Hartley AJ, Chong G et al (2010) Eocene to Pleistocene lithostratigraphy, chronostratigraphy and tectono-sedimentary evolution of the Calama Basin, northern Chile. Andean Geol 32:33–58. https://doi.org/10.5027/andgeoV32n1-a04

    Article  Google Scholar 

  • McDowell FW, McIntosh WC, Farley KA (2005) A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem Geol 214:249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002

    Article  Google Scholar 

  • Menzies A, Campos E, Hernandez V, et al (2015) Understanding exotic-Cu mineralisation: part II - characterisation of black copper (“Cobre Negro”). 13th SGA biennial meeting, Nancy, France

  • Mortimer C, Munchmeyer C, Urqueta I (1977) Emplacement of the exotica orebody, Chile. Institute of Mining and Metallurgy Transactions 86:B121–B127

  • Mote TI, Becker TA, Renne P (2001) Chronology of exotic mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ Geol 96:351–366

    Article  Google Scholar 

  • Mpodozis C, Cornejo P (2012) Cenozoic tectonics and porphyry copper systems of the Chilean Andes. Society of Economic Geologists Special publication 16:32

  • Mpodozis C, Ramos V (1989) The Andes of Chile and Argentina. Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources 59–90

  • Munchmeyer C (1996) Exotic deposits - products of lateral migration of supergene solutions from porphyry copper deposits. Andean copper deposits : new discoveries, mineralization, styles and metallogeny 43–58

  • Munizaga F, Maksaev V, Fanning CM et al (2008) Late Paleozoic–Early Triassic magmatism on the western margin of Gondwana: Collahuasi area, northern Chile. Gondwana Res 13:407–427. https://doi.org/10.1016/j.gr.2007.12.005

    Article  Google Scholar 

  • Nelson M, Kyser K, Clark A, Oates C (2007) Carbon isotope evidence for microbial involvement in exotic copper silicate mineralization, Huinquintipa and Mina Sur, northern Chile. Econ Geol 102:1311–1320. https://doi.org/10.2113/gsecongeo.102.7.1311

    Article  Google Scholar 

  • Newberg DW (1967) Geochemical implications of chrysocolla-bearing alluvial gravels. Econ Geol 62:932–956. https://doi.org/10.2113/gsecongeo.62.7.932

    Article  Google Scholar 

  • Ossandon G, Fréraut R, Gustafson LB et al (2001) Geology of the Chuquicamata mine : a progress report. Econ Geol 96:249–270

    Article  Google Scholar 

  • Pinget M-C (2016) Supergene enrichment and exotic mineralization at Chuquicamata, Chile. Unpublished PhD thesis, Université de Genève

  • Quang CX, Clark AH, Lee JKW, Jorge Guillén B (2003) 40Ar-39Ar ages of hypogene and supergene mineralization in the Cerro Verde-Santa Rosa porphyry Cu-Mo cluster, Arequipa, Peru. Econ Geol 98:1683–1696. https://doi.org/10.2113/gsecongeo.98.8.1683

    Article  Google Scholar 

  • Ransome FL (1912) Copper deposits near superior, Arizona. US Geol Surv Bull 540-D:139–158

    Google Scholar 

  • Rech JA, Currie BS, Michalski G, Cowan AM (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34:761. https://doi.org/10.1130/G22444.1

    Article  Google Scholar 

  • Rech JA, Currie BS, Jordan TE et al (2019) Massive middle Miocene gypsic paleosols in the Atacama Desert and the formation of the Central Andean rain-shadow. Earth Planet Sci Lett 506:184–194. https://doi.org/10.1016/j.epsl.2018.10.040

    Article  Google Scholar 

  • Reich M, Palacios C, Vargas G, Luo S, Cameron EM, Leybourne MI, Parada MA, Zúñiga A, You CF (2009) Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineral Deposita 44:497–504. https://doi.org/10.1007/s00126-009-0229-3

    Article  Google Scholar 

  • Reutter K-J, Scheuber E, Chong G (1996) The Precordilleran fault system of Chuquicamata, northern Chile: evidence for reversals along arc-parallel strike-slip faults. Tectonophysics 259:213–228. https://doi.org/10.1016/0040-1951(95)00109-3

    Article  Google Scholar 

  • Reynolds P, Ravenhurst C, Zentilli M, Lindsay D (1998) High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chem Geol 148:45–60

    Article  Google Scholar 

  • Riquelme R, Tapia M, Campos E et al (2017) Supergene and exotic Cu mineralization occur during periods of landscape stability in the Centinela Mining District, Atacama Desert. Basin Res. https://doi.org/10.1111/bre.12258

  • Rivera S, Alcota H, Proffett J et al (2012) Update of the Geologic Setting and Cu–Mo Deposits of the Chuquicamata District, Northern Chile. In: Harris M, Camus F (eds) Geology and genesis of major copper deposits and districts of the world: a tribute to Richard H. Sillitoe and J.W. Hedenquist. Society of Economic Geologists Special publication, pp 19–54

  • Russo RE, Mao X, Gonzalez JJ, Mao SS (2002) Femtosecond laser ablation ICP-MS. J Anal At Spectrom 17:1072–1075. https://doi.org/10.1039/B202044K

    Article  Google Scholar 

  • Sanchez C, Brichau S, Riquelme R et al (2018) Exhumation history and timing of supergene copper mineralisation in an arid climate: new thermochronological data from the Centinela District, Atacama, Chile. Terra Nova 30:78–85. https://doi.org/10.1111/ter.12311

    Article  Google Scholar 

  • Scheuber E, Reutter K-J (1992) Magmatic arc tectonics in the Central Andes between 21° and 25°S. Tectonophysics 205:127–140. https://doi.org/10.1016/0040-1951(92)90422-3

    Article  Google Scholar 

  • Schwartz GM (1934) Paragenesis of the oxidized ores of copper. Econ Geol 29:55–75. https://doi.org/10.2113/gsecongeo.29.1.55

    Article  Google Scholar 

  • Shoemaker GL, Anderson JB, Kostiner E (1977) Refinement of the crystal structure of pseudomalachite. Am Mineral 62:1042–1048

    Google Scholar 

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. Society of Economic Geologists 100th anniversary volume, 723–768

  • Sillitoe RH, McKee EH (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Econ Geol 91:164–179. https://doi.org/10.2113/gsecongeo.91.1.164

    Article  Google Scholar 

  • Sillitoe RH, Perelló J (2005) Andean Copper Province: tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. Society of Economic Geologists 100th, 845–890

  • Sláma J, Košler J, Condon DJ et al (2008) Plešovice zircon — a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Sun M-S (1963) The nature of chrysocolla from inspiration mine. Am Mineral 48:649–658

    Google Scholar 

  • Sylvester PJ (2008) LA-(MS)-ICP-MS trends in 2006 and 2007 with particular emphasis on measurement uncertainties. Geostand Geoanal Res 32:469–488

    Article  Google Scholar 

  • Thompson WA (1980) Chrysocolla pseudomorphs from Ray, Arizona. Mineral Rec 11:248–250

    Google Scholar 

  • Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS: Apatite LA-MC-ICPMS U-Pb Dating. Geochem Geophys Geosyst 13:n/a–n/a. https://doi.org/10.1029/2011GC003928

    Article  Google Scholar 

  • Throop AH, Buseck PR (1971) Nature and origin of black chrysocolla at the Inspiration mine, Arizona. Econ Geol 66:1168–1175. https://doi.org/10.2113/gsecongeo.66.8.1168

    Article  Google Scholar 

  • Tomlinson AJ, Blanco N (1997) Structural evolution and displacement history of the West Fault System, Pre-cordillera. Chile. Chile 1873-1878:1878–1882

    Google Scholar 

  • Tomlinson AJ, Blanco N (2008) Geologia de la franja Chuquicamata-El Abra, (21°45′ 22°30’ S), II Region SERNAGEOMIN 196

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021

    Article  Google Scholar 

  • Yates DM, Joyce KJ, Heaney PJ (1998) Complexation of copper with polymeric silica in aqueous solution. Appl Geochem 13:235–241

    Article  Google Scholar 

  • Zentilli M, Maksaev V, Boric R, Wilson J (2018) Spatial coincidence and similar geochemistry of Late Triassic and Eocene–Oligocene magmatism in the Andes of northern Chile: evidence from the MMH porphyry type Cu–Mo deposit, Chuquicamata District. Int J Earth Sci 107:1097–1126. https://doi.org/10.1007/s00531-018-1595-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank CODELCO Chile and all the geologists for providing access to the Mina Sur open-pit and for their assistance during the sampling campaign achieved by Eduardo Campos. We would like to thank Fabienne de Parseval who helped with the preparation of the polished and thin sections. The authors want to thank Thierry Aigouy and Philippe de Parseval for their assistance during SEM imaging and electron probe microanalysis respectively. Finally, we thank reviewers T. Bissig and Zhi-Yong Zhu and editors Georges Beaudoin and Shao-Yong Jiang for their constructive and detailed reviews of this manuscript that help us to improve it significantly.

Funding

We thank the IRD (Institut de Recherche pour le Développement, France) and FONDECYT Project No. 1170992 (CONICYT, Chile), for its financial support and more specifically the LMI Copedim, a research program supported by IRD, Université Paul Sabatier (Toulouse, France) and Universidad Católica del Norte (Antofagasta, Chile). This research project was conducted thanks to the French ministry of Higher Education and Research PhD scholarship of Z. S. Kahou, the IRD allowing long-term mission. This work was supported by the program funding of the Institut Carnot ISIFoR and the TelluS Program of CNRS/INSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia Steven Kahou.

Additional information

Editorial handling: S.-Y. Jiang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1119 kb).

ESM 2

(XLSX 57 kb).

ESM 3

(PDF 927 kb).

ESM 4

(PDF 908 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahou, Z.S., Brichau, S., Poujol, M. et al. First U-Pb LA-ICP-MS in situ dating of supergene copper mineralization: case study in the Chuquicamata mining district, Atacama Desert, Chile. Miner Deposita 56, 239–252 (2021). https://doi.org/10.1007/s00126-020-00960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-00960-2

Keywords

Navigation