Skip to main content

Advertisement

Log in

Bog Microtopography and the Climatic Sensitivity of Testate Amoeba Communities: Implications for Transfer Function-Based Paleo-Water Table Reconstructions

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although the use of sub-fossil testate amoebae as a proxy for raised bog hydrology in Holocene paleoecological studies is well-established, some detailed aspects of species-environment relationships remain under-researched. One such issue is the effect of bog surface microtopography on the climatic sensitivity of testate amoeba communities. Although it has been suggested that some microforms—especially hummocks—may be less sensitive to climatic forcing than others, this has rarely been objectively tested. To investigate this, subfossil testate amoebae assemblages have been examined in a series of shallow cores collected along a hummock-lawn-hollow transect from a bog in central Ireland and the resulting reconstructed water table records, dated using 210Pb, have been compared with instrumental weather data. Testate amoebae communities in the hollow microform were found to be significantly less diverse than those in the hummock and lawn, and both the hummock and lawn showed statistically significant correlations with instrumental temperature and precipitation data. Therefore, whilst the suggestion that paleoecological investigations should target intermediate bog microforms remains sound, the notion that hummock-based testate amoebae hydrological data are climatically-insensitive is challenged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beyens L, Chardez D (1984) Testate amoebae (Rhizopoda, Testaceae) from South-West Ireland. Arch Für Protistenkd 128:109–126. https://doi.org/10.1016/S0003-9365(84)80033-0

    Article  Google Scholar 

  2. Bobrov AA, Charman DJ, Warner BG (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist 150:125–136

    Article  CAS  Google Scholar 

  3. Booth RK (2002) Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. J Paleolimnol 28:329–348

    Article  Google Scholar 

  4. Booth RK, Sullivan ME, Sousa VA (2008) Ecology of testate amoebae in a North Carolina pocosin and their potential use as environmental and paleoenvironmental indicators. Ecoscience 15:277–289. https://doi.org/10.2980/15-2-3111

    Article  Google Scholar 

  5. Charman DJ, Blundell A, ACCROTELM Members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221. https://doi.org/10.1002/jqs.1026

    Article  Google Scholar 

  6. De Graaf F (1956) Studies on Rotaria and Rhizopoda from the Netherlands. Bioloisch Jaarb Dodonea 23:145–217

    Google Scholar 

  7. Escobar J, Martínez JI, Parra LN (2005) The Camoebians (Testaceous rhizopods) from a tropical lake: La Fe Reservoir, Antioquia, Colombia. Caldasia 27:293–298

    Google Scholar 

  8. Grospietsch T (1953) Rhizopodenanalytische Untersuchungen an Mooren Ostholsteins. Arch Für Hydrobiol 47:321–452

    Google Scholar 

  9. Heal OW (1962) The abundance and microdistribution of testate amoebae (Protozoa: Rhizopoda) in Sphagnum. Oikos 13:35–47

    Article  Google Scholar 

  10. Heal OW (1961) The distribution of testate amoebae (Rhizopoda: Testacea) in some fens and bogs in northern England. J Linn Soc Zool 44:369–382

    Article  Google Scholar 

  11. Jassey VEJ, Chiapusio G, Mitchell EAD, Binet P, Toussaint ML, Gilbert D (2011) Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb Ecol 61:374–385. https://doi.org/10.1007/s00248-010-9756-9

    Article  PubMed  Google Scholar 

  12. Lamentowicz M, Lamentowicz Ł, Knaap WO et al (2009) Contrasting species—environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen–bog gradient. Microb Ecol 59:499–510. https://doi.org/10.1007/s00248-009-9617-6

    Article  PubMed  Google Scholar 

  13. Lamentowicz M, Mitchell EAD (2005) The ecology of testate amoebae (Protists) in Sphagnum in North-Western Poland in relation to peatland ecology. Microb Ecol 50:48–63. https://doi.org/10.1007/s00248-004-0105-8

    Article  PubMed  Google Scholar 

  14. Mazei YA, Tsyganov AN, Bubnova OA (2007) Structure of a community of testate amoebae in a sphagnum dominated bog in upper sura flow (Middle Volga Territory). Biol Bull 34:382–394. https://doi.org/10.1134/S1062359007040115

    Article  Google Scholar 

  15. Meisterfeld R (1977) Die horizontale und vertikale Verteilung der Testaceen (Rhizopden, Testecea) in Sphagnum. Arch Für Hydrobiol 79:319–356

    Google Scholar 

  16. Swindles GT, Charman DJ, Roe HM, Sansum PA (2009) Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the north of Ireland: implications for Holocene palaeoclimate studies. J Paleolimnol 42:123–140. https://doi.org/10.1007/s10933-008-9266-7

    Article  Google Scholar 

  17. Tolonen K (1986) Rhizopod analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, Chichester

    Google Scholar 

  18. Tolonen K, Warner BG, Vasander H (1992) Ecology of testaceans (Protozoa: Rhizopoda) in mires in southern Finland: 1. Autecology. Arch Für Protistenkd 142:119–138

    Article  Google Scholar 

  19. Tsyganov AN, Aerts R, Nijs I et al (2012) Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations. Protist 163:400–414. https://doi.org/10.1016/j.protis.2011.07.005

    Article  PubMed  Google Scholar 

  20. Charman DJ (1997) Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J R Soc N Z 27:465. https://doi.org/10.1080/03014223.1997.9517549

    Article  Google Scholar 

  21. Charman DJ, Warner BG (1992) Relationship between testate amoebae (Protozoa: Rhizopoda) and microenvironmental parameters on a forested peatland in northeastern Ontario. Can J Zool 70:2474–2482. https://doi.org/10.1139/z92-331

    Article  Google Scholar 

  22. Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. The Holocene 8:261–273. https://doi.org/10.1191/095968398667004497

    Article  Google Scholar 

  23. Amesbury MJ, Charman DJ, Fyfe RM et al (2008) Bronze age upland settlement decline in Southwest England: testing the climate change hypothesis. J Archaeol Sci 35:87–98

    Article  Google Scholar 

  24. Charman DJ (2010) Centennial climate variability in the British Isles during the mid-late Holocene. Quat Sci Rev 29:1539–1554

    Article  Google Scholar 

  25. Gearey B, Caseldine C (2006) Archaeological applications of testate amoebae analyses: a case study from Derryville, Co. Tipperary, Ireland. J Archaeol Sci 33:49–55

    Article  Google Scholar 

  26. Mitchell EAD, Charman DJ, Warner BG (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137. https://doi.org/10.1007/s10531-007-9221-3

    Article  Google Scholar 

  27. Plunkett G, Whitehouse NJ, Hall VA et al (2009) A multi-proxy palaeoenvironmental investigation of the findspot of an Iron Age bog body from Oldcroghan, Co. Offaly, Ireland. J Archaeol Sci 36:265–277

    Article  Google Scholar 

  28. Swindles GT, Lawson IT, Matthews I et al (2013) Centennial-scale climate change in Ireland during the Holocene. Earth Sci Rev 126:300–320

    Article  Google Scholar 

  29. Swindles GT, Blundell A, Roe HM, Hall VA (2010) A 4500-year proxy climate record from peatlands in the north of Ireland: the identification of widespread summer ‘drought phases’? Quat Sci Rev 29:1577–1589

    Article  Google Scholar 

  30. Stastney P, Young DS, Branch NP (2018) The identification of late-Holocene bog bursts at Littleton bog. Ireland: Ecohydrological changes display complex climatic and non-climatic drivers: The Holocene 28:570–582. https://doi.org/10.1177/0959683617735581

    Article  Google Scholar 

  31. Mieczan T (2010) Vertical micro-zonation of testate amoebae and ciliates in peatland waters in relation to potential food resources and grazing pressure. Int Rev Hydrobiol 95:86–102. https://doi.org/10.1002/iroh.200911188

    Article  Google Scholar 

  32. Roe HM, Elliott SM, Patterson RT (2017) Re-assessing the vertical distribution of testate amoeba communities in surface peats: implications for palaeohydrological studies. Eur J Protistol 60:13–27. https://doi.org/10.1016/j.ejop.2017.03.006

    Article  PubMed  Google Scholar 

  33. Marcisz K, Fournier B, Gilbert D, Lamentowicz M, Mitchell EA (2014) Response of Sphagnum peatland testate amoebae to a 1-year transplantation experiment along an artificial hydrological gradient. Microb Ecol 67:810–818. https://doi.org/10.1007/s00248-014-0367-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sullivan ME, Booth RK (2011) The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands. Microb Ecol 62:80–93. https://doi.org/10.1007/s00248-011-9875-y

    Article  PubMed  Google Scholar 

  35. Talbot J, Richard PJH, Roulet NT, Booth RK (2010) Assessing long-term hydrological and ecological responses to drainage in a raised bog using paleoecology and a hydrosequence. J Veg Sci 21:143–156. https://doi.org/10.1111/j.1654-1103.2009.01128.x

    Article  Google Scholar 

  36. Barber K, Maddy D, Rose N et al (2000) Replicated proxy-climate signals over the last 2000 yr from two distant UK peat bogs: new evidence for regional palaeoclimate teleconnections. Quat Sci Rev 19:481–487

    Article  Google Scholar 

  37. Charman DJ, Blundell A, Chiverrell RC et al (2006) Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain. Quat Sci Rev 25:336–350. https://doi.org/10.1016/j.quascirev.2005.05.005

    Article  Google Scholar 

  38. Aaby B (1976) Cyclic climatic variations in climate over the past 5,500 yr reflected in raised bogs. Nature 263:281–284. https://doi.org/10.1038/263281a0

    Article  Google Scholar 

  39. Barber K (1981) Peat stratigraphy and climatic change: a paleoecological test of the theory of cyclic peat bog regeneration. Balkema, Rotterdam

    Google Scholar 

  40. Osvald H (1923) Die vegetation des Hochmoores Komosse. Sven Vaxttsociologiska Sallskapets Handl 1:1–436

    Google Scholar 

  41. Barber K, Langdon PG (2007) What drives the peat-based palaeoclimate record? A critical test using multi-proxy climate records from northern Britain. Quat Sci Rev 26:3318–3327. https://doi.org/10.1016/j.quascirev.2007.09.011

    Article  Google Scholar 

  42. Walker D, Walker PM (1961) Stratigraphic evidence of regeneration in some Irish bogs. J Ecol 49:169–185. https://doi.org/10.2307/2257432

    Article  Google Scholar 

  43. Barber KE (1993) Peatlands as scientific archives of past biodiversity. Biodivers Conserv 2:474–489

    Article  Google Scholar 

  44. Niinemets E, Pensa M, Charman DJ (2011) Analysis of fossil testate amoebae in Selisoo bog, Estonia: local variability and implications for palaeoecological reconstructions in peatlands. Boreas 40:367–378. https://doi.org/10.1111/j.1502-3885.2010.00188.x

    Article  Google Scholar 

  45. Charman DJ (2007) Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions. The Holocene 17:217–227. https://doi.org/10.1177/0959683607075836

    Article  Google Scholar 

  46. Charman DJ, Brown AD, Hendon D, Karofeld E (2004) Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quat Sci Rev 23:137–143. https://doi.org/10.1016/j.quascirev.2003.10.006

    Article  Google Scholar 

  47. Troels-Smith J (1955) Karakterisering af lose jordarter. Characterization of unconsolidated sediments. Geol Surv Den 3:1–73

    Google Scholar 

  48. Appleby PG (2002) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking Environmental Change Using Lake Sediments. Springer Dordrecht, pp 171–203

  49. Le Roux G, Marshall WA (2011) Constructing recent peat accumulation chronologies using atmospheric fall-out radionuclides. Mires Peat 7:1–14

    Google Scholar 

  50. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8. https://doi.org/10.1016/S0341-8162(78)80002-2

    Article  CAS  Google Scholar 

  51. Charman DJ, Hendon D, Woodland WA (2000) The identification of testate amoebae (Protozoa:Rhizopoda) in peats. Quaternary Research Association, London

    Google Scholar 

  52. Amesbury MJ, Swindles GT, Bobrov A et al (2016) Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quat Sci Rev 152:132–151. https://doi.org/10.1016/j.quascirev.2016.09.024

    Article  Google Scholar 

  53. Duckert C, Blandenier Q, Kupferschmid FAL, Kosakyan A, Mitchell EAD, Lara E, Singer D (2018) En garde! Redefinition of Nebela militaris (Arcellinida, Hyalospheniidae) and erection of Alabasta gen. nov. Eur J Protistol 66:156–165. https://doi.org/10.1016/j.ejop.2018.08.005

    Article  PubMed  Google Scholar 

  54. Line JM, Ter Braak CJF, Birks HJB (1994) WACALIB version 3.3 - a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample specific errors of prediction. J Paleolimnol 10:147–152

    Article  Google Scholar 

  55. Hill MO (1979) DECORANA - A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca

    Google Scholar 

  56. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Palaeontological Statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  57. Klein Tank AMG, Wijngaard JB, Können GP et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453. https://doi.org/10.1002/joc.773

    Article  Google Scholar 

  58. Belyea LR, Clymo RS (2001) Feedback control of the rate of peat formation. Proc R Soc B Biol Sci 268:1315–1321. https://doi.org/10.1098/rspb.2001.1665

    Article  CAS  Google Scholar 

  59. Monna F, van Oort F, Hubert P, Dominik J, Bolte J, Loizeau JL, Labanowski J, Lamri J, Petit C, le Roux G, Chateau C (2009) Modeling of 137Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments. J Environ Radioact 100:9–16. https://doi.org/10.1016/j.jenvrad.2008.09.009

    Article  PubMed  CAS  Google Scholar 

  60. Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414. https://doi.org/10.1016/0012-821X(71)90202-0

    Article  CAS  Google Scholar 

  61. Payne RJ, Mitchell EAD (2008) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol 42:483–495. https://doi.org/10.1007/s10933-008-9299-y

    Article  Google Scholar 

  62. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  63. Turner TE, Swindles GT, Charman DJ, Blundell A (2013) Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeogr Palaeoclimatol Palaeoecol 369:395–408. https://doi.org/10.1016/j.palaeo.2012.11.005

    Article  Google Scholar 

  64. Whittle A, Amesbury MJ, Charman DJ, Hodgson DA, Perren BB, Roberts SJ, Gallego-Sala AV (2019) Salt-enrichment impact on biomass production in a natural population of peatland dwelling Arcellinida and Euglyphida (Testate Amoebae). Microb Ecol 78:534–538. https://doi.org/10.1007/s00248-018-1296-8

    Article  PubMed  Google Scholar 

  65. Patterson RT, Kumar A (2002) A review of current testate rhizopod (thecamoebian) research in Canada. Palaeogeogr Palaeoclimatol Palaeoecol 180:225–251

    Article  Google Scholar 

  66. Marcisz K, Lamentowicz Ł, Słowińska S, Słowiński M, Muszak W, Lamentowicz M (2014) Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur J Protistol 50:445–455. https://doi.org/10.1016/j.ejop.2014.07.001

    Article  PubMed  Google Scholar 

  67. Booth RK (2008) Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America. J Quat Sci 23:43–57. https://doi.org/10.1002/jqs.1114

    Article  Google Scholar 

  68. Barber K (1994) Deriving Holocene palaeoclimates from peat stratigraphy: some misconceptions regarding sensitivity and continuity of the record. Q Newsl 72:1–9

    Google Scholar 

  69. Barber K, Dumayne-Peaty L, Hughes P et al (1998) Replicability and variability of the recent macrofossil and proxy-climate record from raised bogs: field stratigraphy and macrofossil data from Bolton Fell Moss and Walton Moss, Cumbria, England. J Quat Sci 13:515–528. https://doi.org/10.1002/(SICI)1099-1417(1998110)13:6<515::AID-JQS393>3.0.CO;2-S

    Article  Google Scholar 

  70. De Vleeschouwer F, Chambers FM, Swindles GT (2010) Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 7:1–10

    Google Scholar 

  71. Väliranta M, Blundell A, Charman DJ et al (2012) Reconstructing peatland water tables using transfer functions for plant macrofossils and testate amoebae: a methodological comparison. Quat Int 268:34–43. https://doi.org/10.1016/j.quaint.2011.05.024

    Article  Google Scholar 

  72. Mauquoy D, Hughes PDM, van Geel B (2010) A protocol for plant macrofossil analysis of peat deposits. Mires Peat 7:1–5

    Google Scholar 

  73. Plunkett G (2006) Tephra-linked peat humification records from Irish ombrotrophic bogs question nature of solar forcing at 850 cal. yr BC. J Quat Sci 21:9–16. https://doi.org/10.1002/jqs.951

    Article  Google Scholar 

  74. Payne RJ, Blackford JJ (2008) Peat humification and climate change: a multi-site comparison from mires in south-east Alaska. Mires Peat 3:1–11

    Google Scholar 

  75. Barber KE, Charman DJ (2003) Holocene palaeoclimate records from peatlands. In: Mackay A, Battarbee RW, Birks J, Oldfield F (eds) Global change in the holocene. Arnold, London, pp 210–226

    Google Scholar 

  76. Charman DJ (2002) Peatlands and environmental change. J. Wiley, Chichester

    Google Scholar 

  77. Charman DJ (2001) Biostratigraphic and palaeoenvironmental applications of testate amoebae. Quat Sci Rev 20:1753–1764. https://doi.org/10.1016/S0277-3791(01)00036-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge and thank Bord na Móna (Ireland) for access to the study site. Alex Whittle and the two anonymous referees are thanked for their insightful comments that helped improve an earlier version of this manuscript.

Funding

PS was supported by a PhD studentship funded by SAGES (formerly SHES) and QUEST, University of Reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Stastney.

Electronic supplementary material

ESM 1

(XLSX 22 kb)

ESM 2

(XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stastney, P., Black, S. Bog Microtopography and the Climatic Sensitivity of Testate Amoeba Communities: Implications for Transfer Function-Based Paleo-Water Table Reconstructions. Microb Ecol 80, 309–321 (2020). https://doi.org/10.1007/s00248-020-01499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01499-5

Keywords

Navigation