Skip to main content
Log in

Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Strain KSNA2T, a Gram-negative, moderately halophilic, facultatively anaerobic, motile, rod-shaped bacterium, was isolated from the surface-sterilized stem tissue of a beach morning glory (Cafystegia soldanella) plant in Chuja Island, Jeju-do, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed that strain KSNA2T formed a distinct lineage within the family Enterobacteriaceae, with the highest 16S rRNA gene sequence similarity to Izhakiella australiensis KCTC 72143 (96.2%) and Izhakiella capsodis KCTC 72142T (96.0%), exhibited 95.5–95.9% similarity to other genera in the family Enterobacter-iaceae and Erwiniaceae. Conserved signature indels analysis elucidated that strain KSNA2T was delimited into family Enterobacteriaceae. KSNA2 genome comprises a circular chromosome of 5,182,800 bp with 56.1% G + C content Digital DNA-DNA relatedness levels between strain KSNA2T and 18 closely related species were 19.3 to 21.1%. Average nucleotide identity values were between 72.0 and 76.7%. Growth of strain KSNA2T was observed at 4 to 45°C (optimum, 25°C) and pH 5.0 to 12.0 (optimum, pH 7.0) in the presence of 0 to 11% (w/v) NaCl (optimum, 0–7%). The major cellular fatty acids (> 10%) were C16:o followed by summed feature 8 (C18ω7c and/or C18ω6c), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C17:0cyclo, and C14:0. The major isoprenoid quinone was ubiquinone-8 (Q-8). With combined phylogenetic, genomic, phenotypic, and chemotaxo-nomic features, strain KSNA2T represents a novel species of a new genus in the family Enterobacteriaceae, for which the name Jejubacter calystegiae gen. nov., sp. nov. is proposed. The type strain is KSNA2T (= KCTC 72234T = CCTCC AB 2019098T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adeolu, M., Alnajar, S., Naushad, S., and Gupta, R.S. 2016 Genome-based phylogeny and taxonomy of the ‘Entewbacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. j. Syst. Evol. Microbiol.66, 5575–5599.

    Article  CAS  PubMed  Google Scholar 

  • Aizenberg-Gershtein, Y., Laviad, S., Samuni-Blank, M., and Halpern, M. 2016. Izhakiella capsodis gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from the mirid bug Capsodes infuscatus. Int. j. Syst. Evol. Microbiol.66, 1364–1370.

    Article  CAS  PubMed  Google Scholar 

  • Alnajar, S. and Gupta, R.S. 2017 Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect. Genet. Evol.54, 108–127.

    Article  PubMed  Google Scholar 

  • Aly, M.A., Domig, K.J., Kneifel, W., and Reimhult, E. 2019. Whole genome sequencing-based comparison of food isolates of Cronobacter sakazakii. Front. Microbiol. 10, 1464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek, C., Shin, S.K., and Yi, H. 2019 Limnobaculum parvum gen. nov., sp. nov., isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol.69, 1826–1830.

    Article  CAS  PubMed  Google Scholar 

  • Barth, C.S., Tolentino, H.G.S., Rocha, L.W., da Silva, G.F., dos Anjos, M.F., Pastor, V.D., Bresolin, T.M.B., Couto, A.G., Santin, J.R., and Quintao, N.L.M. 2017 Ipomoea pes-caprae (L.) R. Br (Convol-vulaceae) relieved nociception and inflammation in mice - A topical herbal medicine against effects due to cnidarian venom-skin contact. J. Ethnopharmacol.200, 156–164.

    Article  CAS  Google Scholar 

  • Bauer, A.W., Kirby, W.M., Sherris, J.C., and Truck, M. 1966 Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol.45, 493–496.

    Article  CAS  PubMed  Google Scholar 

  • Behera, P., Ramana, V.V., Maharana, B., Joseph, N., Vaishanipayan, P., Singh, N.K., Shouche, Y., Bhadury, P., Mishra, S.R., Raina, V., et al. 2017. Mangrovibacterphragmitis sp. nov, an endophyte isolated from the roots of Phragmites karka. Int. J. Syst. Evol. Microbiol.67, 1228–1234.

    Article  CAS  PubMed  Google Scholar 

  • Brady, C., Cleenwerck, I., Venter, S., Coutinho, T., and De Vos, P. 2013 Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb, nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb, nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb, nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb, nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb, nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst. Appl. Microbiol.36, 309–319.

    Article  PubMed  Google Scholar 

  • Chin, C., Alexander, D., Marks, P., Hammer, A.A, Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods10, 563–569.

    Article  CAS  PubMed  Google Scholar 

  • Cho, E.S., Cha, I.T., Choi, H.J., Roh, S.W., Nam, Y.D., Seo, S.M., and Seo, M.J. 2018 Zunongwangia flava sp. nov., belonging to the family Flavobacteriaceae, isolated from Salicornia europaea. J. Microbiol.56, 868–873.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., De Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokartotes. Int. J. Syst. Evol. Microbiol.68, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M.D., Shah, H.N., and Minnikin, D.E. 1980 A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J. Appl. Bacteriol.48, 277–282.

    Article  CAS  PubMed  Google Scholar 

  • Farmer, J.J. III., Asbury, M.A., Hickman, F.W., Brenner, D.J., and the Enterobacteriaceae Study Group. 1980 Enterobacter sakazakii: A new species of “Enterobacteriaceae” isolated from clinical specimens. Int. J. Syst. Bacteriol.30, 569–584.

    Article  Google Scholar 

  • Felsenstein, J. 1981 Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol.17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Halpern, M., Fridman, S., Atamna-Ismaeel, N., and Izhaki, I. 2013 Rosenbergiella nectarea gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from floral nectar. Int. j. Syst. Evol. Microbiol.63, 4259–4265.

    Article  CAS  PubMed  Google Scholar 

  • Hata, H., Natori, T., Mizuno, T., Kanazawa, I., Eldesouky, I., Hayashi, M., Miyata, M., Fukunaga, H., Ohji, S., Hosoyama, A., et al. 2016. Phylogenetics of family Enterobacteriaceae and proposal to reclassify Escherichia hermannii and Salmonella subterranea as Atlantibacter hermannii and Atlantibacter subterranea gen. nov., comb. nov. Microbiol. Immunol.60, 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, S.H., Hwang, W.M., Rang, K., and Ahn, T.Y. 2019 Gra-mella fulva sp. nov., isolated from a dry surface of tidal flat. J. Microbiol.57, 23–29.

    Article  CAS  PubMed  Google Scholar 

  • Iversen, G., Mullane, N., McCardell, B., Tall, B.D., Lehner, A., Fanning, S., Stephan, R., and Joosten, H. 2008 Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol.58, 1442–1447.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, E.E., Masood, N., Ibrahim, K., Urvoy, N., Hariri, S., and Forsythe, S.J. 2015 Description of Siccibacter colletis sp. nov., a novel species isolated from plant material, and emended description of Siccibacter turicensis. Int. J. Syst. Evol. Microbiol.65, 1335–1341.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, E.E., Sonbol, H., Masood, N., and Forsythe, S.J. 2014 Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis. Food Microbiol.44, 226–235.

    Article  CAS  PubMed  Google Scholar 

  • Ji, M., Tang, S., and Ferrari, B.C. 2017 Izhakiella australiensis sp. nov. isolated from an Australian desert soil. Int. J. Syst. Evol. Microbiol.67, 4317–4322.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, S., Cetinkaya, E., Drahovska, H., Levican, A., Figueras, M.J., and Forsythe, S.J. 2012 Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int. J. Syst. Evol. Microbiol.62, 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. 2016 KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.45, D353–D361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, K.W. 2017 Electron microscopic observations of prokaryotic surface appendages. J. Microbiol.55, 919–926.

    Article  PubMed  Google Scholar 

  • Kim, S.J., Ahn, J.H., Weon, H.Y., Hong, S.B., Seok, S.J., Kim, J.S., and Kwon, S.W. 2015 Chujaibacter soli gen. nov., sp. nov., isolated from soil. J. Microbiol.53, 592–597.

    Article  CAS  PubMed  Google Scholar 

  • Kim, I., Chhetri, G., Kim, J., and Seo, T. 2019 Amnibacterium seta-riae sp. nov., an endophytic actinobacterium isolated from dried foxtail. Antonie van Leeuwenhoek112, 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016 MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874.

    Article  CAS  PubMed  Google Scholar 

  • Lane, D.J. 1991 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.) Nucleic acid techniques in bacterial sys-tematics. pp. 115–175. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Lee, Y. and Jeon, C.O. 2017 Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int. J. Syst. Evol. Microbiol.67, 4767–4772.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.A., Kim, Y., Sang, M.K., Song, J., Kwon, S.W., and Weon, H.Y. 2019 Chryseolinea soli sp. nov., isolated from soil. J. Microbiol.57, 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Lindsey, R.L., Garcia-Toledo, L., Fasulo, D., Gladney, L.M., and Strockbine, N. 2017 Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii. J. Microbiol. Methods140, 1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Goker, M. 2013 Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984 An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.

    Article  CAS  Google Scholar 

  • Mlaga, K.D., Lotte, R., Montaudie, H., Rolain, J.M., and Ruimy, R. 2017 ‘Nissabacter archeti’ gen. nov., sp. nov., a new member of Enterobacteriaceae family, isolated from human sample at Archet 2 Hospital, Nice, France. New Microbes New Infect.17, 81–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Na, S.I., Kim, Y.O., Yoon, S.H., Ha, S.M., Baek, I., and Chun, J. 2018 UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol.56, 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Patil, V.S., Salunkhe, R.C., Paul, R.H., Husseneder, C., Shouche, Y.S., and Venkata Ramana, V. 2015 Enterobacillus tribolii gen. nov., sp. nov., a novel member of the family Enterobacteriaceae, isolated from the gut of a red flour beetle, Tribolium castaneum. Antonie van Leeuwenhoek107, 1207–1216.

    Article  CAS  PubMed  Google Scholar 

  • Potter, R.F., D’Souza, A.W., Wallace, M.A., Shupe, A, Patel, S., Gul, D., Kwon, J.H., Beatty, W., Andleeb, S., Burnham, C.D., et. al. 2018. Superficieibacter electus gen. nov., sp. nov., an extended-spectrum ß-lactamase possessing member of the Enterobacteriaceae family, isolated from intensive care unit surfaces. Front. Microbiol.9, 1629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rameshkumar, N., Lang, E., and Nair, S. 2010 Mangrovibacter plan-tisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tate-oka). Int. J. Syst. Evol. Microbiol.60, 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Rzhetsky, A. and Nei, M. 1992 Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J. Mol. Evol.35, 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 2006 Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). In MIDI Technical Note #101. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Solis, J., Baisakh, N., Brandt, S.R., Villordon, A., and La Bonte, D. 2016 Transcriptome profiling of beach morning glory (Ipomoea imperati) under salinity and its comparative analysis with sweet-potato. PLoS One11, e0147398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephan, R., Grim, C.J., Gopinath, G.R., Manimel, M.K., Sathyamoorthy, V., Trach, L.H., Chase, H.R., Fanning, S., and Tall, B.D. 2014 Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb, nov, Franconibacter pulveris comb, nov. and Siccibacter turicensis comb, nov, respectively. Int. J. Syst. Evol. Microbiol.64, 3402–3410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stephan, R., Van Trappen, S., Cleenwerck, I., Iversen, C., Joosten, H., De Vos, P., and Lehner, A. 2008 Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. Int. J. Syst. Evol. Microbiol.58, 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Svobodova, B., Vlach, J., Junkova, P., Karamonova, L., Blažková, M., and Fukal, L. 2017 Novel method for reliable identification of Siccibacter and Franconibacter strains: from “Pseudo-Cronobacter” to new Enterobacteriaceae genera. Appl. Environ. Microbiol.83, e00234–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Naw-rocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., and Ostell, J. 2016 NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res.44, 6614–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgjns, D.G. 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, J.Y., Zhang, M.Y., Zhang, Y., Cheng, J., Liu, L.C., Wu, Y.Y., Zhang, T.Y., and Zhang, Y.X. 2019 Edaphovirga cremea gen. nov., sp. nov., isolated from the rhizospheric soil of Codonopsis clematidea. J. Microbiol.57, 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017a. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol.67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., Ha, S.M., Lim, J., Kwon, S., and Chun, J. 2017b. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek110, 1281–1286.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Guo, S.H., Sun, B., Zhang, J., Cheng, M.G., Li, Q., Hong, Q., and Huang, X. 2015 Mangrovibacteryixingensis sp. nov, isolated from farmland soil. Int. j. Syst. Evol. Microbiol.65, 2447–2452.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Li, L., Li, S.H., Wang, H.F., Hozzein, W.N., Zhang, Y.G., Wadaan, M.A., Li, W.J., and Tian, C.Y. 2015 Actinotalea suaedae sp. nov., isolated from the halophyte Suaeda physophora in Xinjiang, Northwest China. Antonie van Leeuwenhoek107, 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Aharon Oren for his assistance with the nomenclature and etymology. We also thank Dr. Belinda C. Ferrari for providing the full-length sequence of the 16S rRNA gene of I. australiensis KCTC 72143T. This work was carried out with support from the KRIBB Research Initiative Program (KGM5281913).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suk Weon Kim or Jiyoung Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Wang, D., Lee, JS. et al. Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory. J Microbiol. 58, 357–366 (2020). https://doi.org/10.1007/s12275-020-9294-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9294-1

Keywords

Navigation