Skip to main content
Log in

Distribution characteristics of fungal communities with depth in paddy fields of three soil types in China

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Little is known about the distribution of fungal communities with soil depth on relatively large scales. In this study, typical paddy soils in three regions (Hailun, Changshu, and Yingtan) from north to south China were selected to investigate the vertical distribution (0-100 cm) of the fungal community by Illumina MiSeq sequencing, and to identify the main factors influencing the fungal community distribution. The results indicated that the structure of the soil fungal community changed significantly with region and soil depth. Soil fungal taxa such as Zygomycota, Glomeromycota, Saccharomycete, Kazachstania, Mortierella, Massariosphaeria, Hypholoma, and Zopfiella were enriched at depths of 0–20 cm, whereas Dothideomycetes, Microbotryomycetes, Tremellomycetes, Sporobolomyces, Cryptococcus, Rhodotorula, Fusarium, and Pyrenochaetopsis had high relative abundances at 80–100 cm. Variance partitioning analysis indicated that the geographic distance contributed more to the fungal community variation than environmental variables on a large scale. In addition, soil total carbon and nitrogen contents were the main environmental factors driving the vertical distribution of the fungal community in paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Raheem, A. and Shearer, C.A. 2002. Extracellular enzyme production by freshwater ascomycetes. Fungal Divers.11, 1–19.

    Google Scholar 

  • Aciego Pietri, J.C. and Brookes, P.C. 2009. Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biol. Biochem.41, 1396–1405.

    CAS  Google Scholar 

  • Alexopoulos, C.J., Mims, C.W., and Blackwell, M. 1996. Introductory Mycology, 4th edn. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol.26, 32–46.

    Google Scholar 

  • Botha, A. 2006. Yeasts in soil, In Rosa, C.A. and Péter, G. (eds.), Biodiversity and Ecophysiology of Yeasts, pp. 221–240. Springer, Berlin-Heidelberg, Germany.

    Google Scholar 

  • Botha, A. 2011. The importance and ecology of yeasts in soil. Soil Biol. Biochem.43, 1–8.

    CAS  Google Scholar 

  • Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R.H., Uroz, S., and Martin, F. 2009. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol.184, 449–456.

    PubMed  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7, 335–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, M. 1989. A view of fungal ecology. Mycologia81, 1–19.

    Google Scholar 

  • Cooperative Research Group on Chinese Soil Taxonomy (CRGCST). 2001. Chinese Soil Taxonomy. Science Press, New York, USA.

    Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics27, 2194–2200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ettema, C.H. and Wardle, D.A. 2002. Spatial soil ecology. Trends Ecol. Evol.17, 177–183.

    Google Scholar 

  • Fierer, N., Schimel, J.P., and Holden, P.A. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem.35, 167–176.

    CAS  Google Scholar 

  • Findlay, S.E., Dye, S., and Kuehn, K.A. 2002. Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. Wetlands22, 616–625.

    Google Scholar 

  • Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J.M.G., Maire, V., Mary, B., Revaillot, S., and Maron, P.A. 2011. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem.43, 86–96.

    CAS  Google Scholar 

  • Gao, C., Zhang, Y., Shi, N.N., Zheng, Y., Chen, L., Wubet, T., Bruelheide, H., Both, S., Buscot, F., Ding, Q., et al. 2015. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol.205, 771–785.

    PubMed  Google Scholar 

  • Huang, X.Q., Liu, L.L., Wen, T., Zhu, R., Zhang, J.B., and Cai, Z.C. 2015. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiol. Res.181, 33–42.

    CAS  PubMed  Google Scholar 

  • Jiang, Y., Liang, Y., Li, C., Wang, F., Sui, Y., Suvannange, N., Zhou, J., and Sun, B. 2016. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem.95, 250–261.

    CAS  Google Scholar 

  • Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F., Bahram, M., Bates, S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol.22, 5271–5277.

    PubMed  Google Scholar 

  • Li, H., Li, T.T., Beasley, D.E., Heděnec, P., Xiao, Z., Zhang, S., Li, J., Lin, Q., and Li, X. 2016. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota. Front. Microbiol.7, 1169.

    PubMed  PubMed Central  Google Scholar 

  • Li, X., Sun, J., Wang, H., Li, X., Wang, J., and Zhang, H. 2017. Changes in the soil microbial phospholipid fatty acid profile with depth in three soil types of paddy fields in China. Geoderma290, 69–74.

    CAS  Google Scholar 

  • Li, X., Wang, J., Zhang, S., Wang, H., Li, X., Li, X., and Zhang, H. 2018. Distribution of fungal endophytes in roots of Stipa krylovii across six vegetation types in grassland of northern China. Fungal Ecol.31, 47–53.

    Google Scholar 

  • Liu, J., Sui, Y., Yu, Z., Shi, Y., Chu, H., Jin, J., Liu, X., and Wang, G. 2015. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem.83, 29–39.

    CAS  Google Scholar 

  • Magoč, T. and Salzberg, S.L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.

    PubMed  PubMed Central  Google Scholar 

  • Moll, J., Goldmann, K., Kramer, S., Hempel, S., Kandeler, E., Marhan, S., Ruess, L., Krüger, D., and Buscot, F. 2015. Resource type and availability regulate fungal communities along arable soil profiles. Microb. Ecol.70, 390–399.

    PubMed  Google Scholar 

  • Moll, J., Hoppe, B., König, S., Wubet, T., Buscot, F., and Krüger, D. 2016. Spatial distribution of fungal communities in an arable soil. PLoS One11, e0148130.

    PubMed  PubMed Central  Google Scholar 

  • Murase, J., Shibata, M., Lee, C.G., Watanabe, T., Asakawa, S., and Kimura, M. 2012. Incorporation of plant residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA stable-isotope probing. FEMS Microbiol. Ecol.79, 371–379.

    CAS  PubMed  Google Scholar 

  • Newman, E. and Reddell, P. 1987. The distribution of mycorrhizas among families of vascular plants. New Phytol.106, 745–751.

    PubMed  Google Scholar 

  • Oehl, F., Sieverding, E., Ineichen, K., Ris, E.A., Boller, T., and Wiemken, A. 2005. Community structure of arbuscular mycorrhizal fungi at different soil depths inextensively and intensively managed agroecosystems. New Phytol.165, 273–283.

    PubMed  Google Scholar 

  • Pagano, M.C., Ribeiro-Soares, J., Cançado, L.G., Falcão, N.P.S., Gonçalves, V.N., Rosa, L.H., Takahashi, J.A., Achete, C.A., and Jorio, A. 2016. Depth dependence of black carbon structure, elemental and microbiological composition in anthropic Amazonian dark soil. Soil Tillage Res.155, 298–307.

    Google Scholar 

  • Pietro-Souza, W., Mello, I.S., Vendruscullo, S.J., Da Silva, G.F., Da Cunha, C.N., White, J.F., and Soares, M.A. 2017. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis areinfluenced by soilmercury contamination. PLoS One12, e0182017.

    PubMed  PubMed Central  Google Scholar 

  • Porras-Alfaro, A., Raghavan, S., Garcia, M., Sinsabaugh, R.L., Natvig, D.O., and Lowrey, T.K. 2014. Endophytic fungal symbionts associated with gypsophilous plants. Botany92, 295–301.

    CAS  Google Scholar 

  • R Development Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Richardson, M. 2009. The ecology of the Zygomycetes and its impact on environmental exposure. Clin. Microbiol. Infect.15, 2–9.

    PubMed  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol.12, R60.

    PubMed  PubMed Central  Google Scholar 

  • Shi, L.L., Mortimer, P.E., Slik, J.W.F., Zou, X.M., Xu, J., Feng, W.T., and Qiao, L. 2014. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Divers.64, 305–315.

    Google Scholar 

  • Sosa-Hernández, M.A., Roy, J., Hempel, S., Kautz, T., Köpke, U., Uksa, M., Schloter, M., Caruso, T., and Rillig, M.C. 2018. Subsoil arbuscular mycorrhizal fungal communities in arable soil differ from those in topsoil. Soil Biol. Biochem.117, 83–86.

    Google Scholar 

  • Stone, M.M., DeForest, J.L., and Plante, A.F. 2014. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol. Biochem.75, 237–247.

    CAS  Google Scholar 

  • Tanaka, K., Hatakeyama, S., and Harada, Y. 2005. Three new freshwater ascomycetes from rivers in Akkeshi, Hokkaido, northern Japan. Mycoscience46, 287–293.

    Google Scholar 

  • Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Villarreal Ruiz, L., Vasco-Palacios, A.M., Thu, P.Q., Suija, A., et al. 2014. Global diversity and geography of soil fungi. Science346, 1256688.

    PubMed  Google Scholar 

  • Toju, H., Tanabe, A.S., Yamamoto, S., and Sato, H. 2012. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One7, e40863.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ryckegem, G. and Verbeken, A. 2005. Fungal diversity and community structure on Phragmites australis (Poaceae) along a salinity gradient in the Scheldt-estuary (Belgium). Nova Hedwigia80, 173–197.

    Google Scholar 

  • Wang, J., Song, Y., Ma, T., Raza, W., Li, J., Howland, J.G., Huang, Q., and Shen, Q. 2017. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol.112, 42–50.

    Google Scholar 

  • Wiens, J.A., Addicott, J.F., Case, T.J., and Diamond, J. 1986. Overview: The importance of spatial and temporal scale in ecological investigations. In Case, T.J. and Diamond, J. (eds.), Community Ecology, 1st edn, pp. 145–172. Harper and Row, New York, USA.

    Google Scholar 

  • Yuan, C.L., Zhang, L.M., Hu, H.W., Wang, J.T., Shen, J.P., and He, J.Z. 2018. The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J. Soil. Sediment.18, 1795–1805.

    CAS  Google Scholar 

  • Yurkov, A.M., Kemler, M., and Begerow, D. 2012. Assessment of yeast diversity in soils under different management regimes. Fungal Ecol.5, 24–35.

    Google Scholar 

  • Zhang, J., Zhang, B., Liu, Y., Guo, Y., Shi, P., and Wei, G. 2018. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ.644, 791–800.

    CAS  PubMed  Google Scholar 

  • Zheng, J., Chen, J., Pan, G., Liu, X., Zhang, X., Li, L., Bian, R., Cheng, K., and Zheng, J. 2016. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci. Total Environ.571, 206–217.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB1501-0101) and the National Natural Science Foundation of China (41671258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, H., Li, X. et al. Distribution characteristics of fungal communities with depth in paddy fields of three soil types in China. J Microbiol. 58, 279–287 (2020). https://doi.org/10.1007/s12275-020-9409-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9409-8

Keywords

Navigation