Skip to main content
Log in

Sutterella faecalis sp. nov., isolated from human faeces

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

An obligately anaerobic, Gram-stain-negative, non-motile, non-spore-forming, and coccobacilli-shaped bacterial strain, designated KGMB03119T, was isolated from human faeces from a Korean. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the genus Sutterella and most closely related to Sutterlla wadsworthensis KCTC 15691T (96.8% 16S rRNA gene sequence similarity). The DNA G + C content of strain KGMB03119T was 58.3 mol% as determined from its whole genome sequence. Strain KGMB03119T was asaccharolytic, catalase-positive, oxidase- and urease-negative. Furthermore, the isolate was positive for alkaline phosphatase, leucine arylamidase, acid phosphatase, arginine arylamidase, alanine arylamidase, and glycine arylamidase. The major cellular fatty acids (> 10%) of the isolate were C18:1ω9c and C16:0. Methylmenaquinone-5 (MMK-5, 100%) was the predominant isoprenoid quinone in the isolate. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain KGMB03119T represents a novel species, for which the name Sutterella faecalis sp. nov. is proposed. The type strain is KGMB03119T (= KCTC 15823T = NBRC 114254T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohnhoff, M., Drake, B.L., and Miller, C.P. 1954. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc. Soc. Exp. Biol. Med.86, 132–137.

    Article  CAS  Google Scholar 

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl. Environ. Microbiol.44, 992–993.

    Article  CAS  Google Scholar 

  • Diaz, H.R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. 2011. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA108, 3047–3052.

    Article  Google Scholar 

  • Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E., and Relman, D.A. 2005. Diversity of the human intestinal microbial flora. Science308, 1635–1638.

    Article  Google Scholar 

  • Finegold, S.M., Attebery, H.R., and Sutter, V.L. 1974. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr.27, 1456–1469.

    Article  CAS  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a species tree topology. Syst. Zool.20, 406–416.

    Article  Google Scholar 

  • Greetham, H.L., Collins, M.D., Gibson, G.R., Giffard, C., Falsen, E., and Lawson, P.A. 2004. Sutterella stercoricanis sp. nov., isolated from canine faeces. Int. J. Syst Evol. Microbiol.54, 1581–1584.

    Article  CAS  Google Scholar 

  • Hall, T.A. 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp. Ser.41, 95–98.

    CAS  Google Scholar 

  • Harper, A., Naghibi, M.M., and Garcha, D. 2018. The role of bacteria, probiotics and diet in irritable bowel syndrome. Foods7, E13.

    Article  Google Scholar 

  • Komagata, K. and Suzuki, K. 1988. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol.19, 161–207.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874.

    Article  CAS  Google Scholar 

  • Lagier, J.C., Khelaifia, S., Alou, M.T., Ndongo, S., Dione, N., Hugon, P., Caputo, A., Cadoret, F., Traore, S.I., Seck, E.H., et al. 2016. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol.1, 16203.

    Article  CAS  Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2015. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol.66, 1100–1103.

    Article  Google Scholar 

  • Macpherson, A.J. and Harris, N.L. 2004. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol.4, 478–485.

    Article  CAS  Google Scholar 

  • Manson, J.M., Rauch, M., and Gilmore, M.S. 2008. The commensal microbiology of the gastrointestinal tract. Adv. Exp. Med. Biol.635, 15–28.

    Article  CAS  Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14, 60.

    Article  Google Scholar 

  • O’Hara, A.M. and Shanahan, F. 2006. The gut flora as a forgotten organ. EMBO Rep.7, 688–693.

    Article  Google Scholar 

  • Peterson, D.A., Frank, D.N., Pace, N.R., and Gordon, J.I. 2008. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe3, 417–427.

    Article  CAS  Google Scholar 

  • Rizzatti, G., Lopetuso, L.R., Gibiino, G., Binda, C., and Gasbarrini, A. 2017. Proteobacteria: A common factor in human diseases. Biomed Res. Int.2017, 9351507.

    Article  CAS  Google Scholar 

  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr.57, 1–24.

    Article  CAS  Google Scholar 

  • Saito, K. 1961. [Studies on the habitation of pathogenic Escherichia coli in the intestinal tract of mice. II. Experimental inoculation of type 055 Escherichia coli after long-term administration of streptomycin]. Paediatr. Jpn.65, 394–399.

    CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.

    CAS  Google Scholar 

  • Sakon, H., Nagai, F., Morotomi, M., and Tanaka, R. 2008. Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol.58, 970–975.

    Article  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc.

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.25, 4876–4882.

    Article  CAS  Google Scholar 

  • Vollaard, E.J., Clasener, H.A., and Janssen, A.J. 1992. Co-trimoxazole impairs colonization resistance in healthy volunteers. J. Antimicrob. Chemother.30, 685–691.

    Article  CAS  Google Scholar 

  • Wexler, H.M., Reeves, D., Summanen, P.H., Molitoris, E., McTeague, M., Duncan, J., Wilson, K.H., and Finegold, S.M. 1996. Sutterella wadsworthensis gen. nov., sp. nov., bile-resistant microaerophilic Campylobacter gracilis-like clinical isolates. Int. J. Syst. Bacteriol.46, 252–258.

    Article  CAS  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol.67, 1613–1617.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bio & Medical Technology Development program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science (NRF-2016M3A9F3946674) and ICT (MSIT) of the Republic of Korea and a grant from the Korea Research Institute of Bioscience & Biotechnology (KRIBB) Research initiative program. This study was conducted in accordance with the IRB regulation at KCTC (P01-201702-31-007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Je Hee Lee or Jung-Sook Lee.

Additional information

Conflicts of Interest

The authors declare that there are no conflicts of interest.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain KGMB03119T is MK999987.

The GenBank/EMBL/DDBJ accession number for the whole genome sequence of strain KGMB03119T is CP040882.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, B.S., Kim, JS., Yu, S.Y. et al. Sutterella faecalis sp. nov., isolated from human faeces. J Microbiol. 58, 99–104 (2020). https://doi.org/10.1007/s12275-020-9396-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9396-9

Keywords

Navigation