Skip to main content
Log in

Large Amplitude Fluctuations in the Alfvénic Solar Wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Large amplitude fluctuations, often with characteristics reminiscent of large amplitude Alfvén waves propagating away from the Sun, are ubiquitous in the solar wind. Such features are most frequently found within fast solar wind streams and most often at solar minimum. The fluctuations found in slow solar wind streams usually have a smaller relative amplitude, are less Alfvénic in character and present more variability. However, intervals of slow wind displaying Alfvénic correlations have been recently identified in different solar cycle phases. In the present paper we report Alfvénic slow solar wind streams seen during the maximum of solar activity that are characterized not only by a very high correlation between velocity and magnetic field fluctuations (as required by outwardly propagating Alfvén modes) – comparable to that seen in fast wind streams – but also by higher amplitude relative fluctuations comparable to those seen in fast wind. Our results suggest that the Alfvénic slow wind has a different origin from the slow wind found near the boundary of coronal holes, where the amplitude of the Alfvénic fluctuations decreases together with decreasing the wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bavassano, B., Dobrowolny, M., Mariani, F., Ness, N.F.: 1982, Radial evolution of power spectra of interplanetary Alfvénic turbulence. J. Geophys. Res.87, 3617. DOI .

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis, L. Jr., Smith, E.J.: 1969, Large-amplitude Alfvén waves in the interplanetary medium: Mariner 5. J. Geophys. Res.74, 2302. DOI .

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis, L.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res.76, 3534. DOI .

    Article  ADS  Google Scholar 

  • Belcher, J.W., Solodyna, C.V.: 1975, Alfvén waves and directional discontinuities in the interplanetary medium. J. Geophys. Res.80, 181. DOI .

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2012, The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties. J. Geophys. Res.117, A05104. DOI .

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys.10, 2. DOI .

    Article  ADS  Google Scholar 

  • Bruno, R., Trenchi, L.: 2014, Radial dependence of the frequency break between fluid and kinetic scales in the solar wind fluctuations. Astrophys. J.787, L24. DOI .

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V., Primavera, L., Malara, F., Sorriso-Valvo, L., Bavassano, B., Veltri, P.: 2004, On the probability distribution function of small-scale interplanetary magnetic field fluctuations. Ann. Geophys.22, 375. DOI .

    Article  Google Scholar 

  • Bruno, R., Telloni, D., Sorriso-Valvo, L., Marino, R., De Marco, R., D’Amicis, R.: 2019, On the low-frequency break observed in the slow solar wind magnetic spectra. Astron. Astrophys.627, A96. DOI .

    Article  ADS  Google Scholar 

  • Chen, C.H.K., Bale, S.D., Salem, C.S., Maruca, B.A.: 2013, Residual energy spectrum of solar wind turbulence. Astrophys. J.770, 125. DOI .

    Article  ADS  Google Scholar 

  • Coleman, P.J.: 1968, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J.153, 371. DOI .

    Article  ADS  Google Scholar 

  • D’Amicis, R., Bruno, R.: 2015, On the origin of highly Alfvénic slow solar wind. Astrophys. J.805, 84. DOI .

    Article  ADS  Google Scholar 

  • D’Amicis, R., Bruno, R., Matteini, L.: 2016, Characterizing the Alfvénic slow wind: A case study. In: Wang, L.H., Bruno, R., Moebius, E., Vourlidas, A., Zank, G. (eds.) Proceedings of the 14th Solar Wind Conference, AIP Conference Proceedings, American Institute of Physics, Melville. DOI .

    Chapter  Google Scholar 

  • D’Amicis, R., Matteini, L., Bruno, R.: 2019, On the slow solar wind with high Alfvénicity: From composition and microphysics to spectral properties. Mon. Not. Roy. Astron. Soc.483, 4665. DOI .

    Article  ADS  Google Scholar 

  • Dmitruk, P., Matthaeus, W.H.: 2007, Low-frequency 1/f fluctuations in hydrodynamic and magnetohydrodynamic turbulence. Phys. Rev. E76, 036305. DOI .

    Article  ADS  Google Scholar 

  • Goldstein, M.L., Roberts, D.A., Matthaeus, W.H.: 1995, Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys.33, 283. DOI .

    Article  ADS  Google Scholar 

  • Goldstein, B.E., et al.: 1996, Ulysses plasma parameters: Latitudinal, radial, and temporal variations. Astron. Astrophys.316, 296.

    ADS  Google Scholar 

  • Grappin, R., Velli, M., Mangeney, A.: 1991, “Alfvénic” versus “standard” turbulence in the solar wind. Ann. Geophys.9, 416.

    ADS  Google Scholar 

  • Ko, Y.-K., Roberts, D.A., Lepri, S.T.: 2018, Boundary of the slow solar wind. Astrophys. J.864, 139. DOI .

    Article  ADS  Google Scholar 

  • Marsch, E., Tu, C.-Y.: 1990, On the radial evolution of MHD turbulence in the inner heliosphere. J. Geophys. Res.95, 8211. DOI .

    Article  ADS  Google Scholar 

  • Matteini, L., Horbury, T.S., Neugebauer, M., Goldstein, B.E.: 2014, Dependence of solar wind speed on the local magnetic field orientation: Role of Alfvénic fluctuations. Geophys. Res. Lett.41, 259. DOI .

    Article  ADS  Google Scholar 

  • Matteini, L., Horbury, T.S., Pantellini, F., Velli, M., Schwartz, S.J.: 2015, Ion kinetic energy conservation and magnetic field strength constancy in multi-fluid solar wind Alfvénic turbulence. Astrophys. J.802, 11. DOI .

    Article  ADS  Google Scholar 

  • Matteini, L., Stansby, D., Horbury, T.S., Chen, C.H.K.: 2018, On the 1/f spectrum in the solar wind and its connection with magnetic compressibility. Astrophys. J. Lett.869, L32. DOI .

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Goldstein, M.L.: 1986, Low-frequency 1/f noise in the interplanetary magnetic field. Phys. Rev. Lett.57, 495. DOI .

    Article  ADS  Google Scholar 

  • Neugebauer, M., Forsyth, R.J., Galvin, A.B., Harvey, K.L., Hoeksema, J.T., Lazarus, A.J., et al.: 1998, Spatial structure of the solar wind and comparisons with solar data and models. J. Geophys. Res.103, 14587. DOI .

    Article  ADS  Google Scholar 

  • Platten, S.J., Parnell, C.E., Haynes, A.L., et al.: 2014, The solar cycle variation of topological structures in the global solar corona. Astron. Astrophys.565, A44. DOI .

    Article  ADS  Google Scholar 

  • Podesta, J.J., Roberts, D.A., Goldstein, M.L.: 2006, Power spectrum of small-scale turbulent velocity fluctuations in the solar wind. J. Geophys. Res.111, A10109. DOI .

    Article  ADS  Google Scholar 

  • Podesta, J.J., Roberts, D.A., Goldstein, M.L.: 2007, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J.664, 543. DOI .

    Article  ADS  Google Scholar 

  • Roberts, D.A.: 2010, Evolution of the spectrum of solar wind velocity fluctuations from 0.3 to 5 AU. J. Geophys. Res.105, A12101. DOI .

    Article  ADS  Google Scholar 

  • Roberts, D.A., Klein, L.W., Goldstein, M.L., Matthaeus, W.H.: 1987, The nature and evolution of magnetohydrodynamic fluctuations in the solar wind - Voyager observations. J. Geophys. Res.92, 11021. DOI .

    Article  ADS  Google Scholar 

  • Salem, C.: 2000, Ph.D. thesis, Univ. Paris VII.

  • Salem, C., Mangeney, A., Bale, S.D., Veltri, P.: 2009, Solar wind magnetohydrodynamics turbulence: Anomalous scaling and role of intermittency. Astrophys. J.702, 537. DOI .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2011, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): A combination of midlatitude small coronal holes, low IMF Bz variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys.29, 839. DOI .

    Article  ADS  Google Scholar 

  • Tu, C.-Y., Marsch, E.: 1995, MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev.73, 1. DOI .

    Article  ADS  Google Scholar 

  • Wang, Y.-M.: 1994, Two types of slow solar wind. Astrophys. J. Lett.437, L67. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the following people and organizations for data provision: R. Lin (UC Berkeley) and R. P. Lepping (NASA/GSFC) for WIND/3DP and WIND/MFI data, respectively. All these data are available on the NASA-CDAWeb website: https://cdaweb.sci.gsfc.nasa.gov/index.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D’Amicis.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Guest Editors: Giovanni Lapenta and Andrei Zhukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amicis, R., Matteini, L., Bruno, R. et al. Large Amplitude Fluctuations in the Alfvénic Solar Wind. Sol Phys 295, 46 (2020). https://doi.org/10.1007/s11207-020-01606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01606-2

Keywords

Navigation