Skip to main content
Log in

New Metric for Minimum Variance Analysis Validation in the Study of Interplanetary Magnetic Clouds

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The aim of this article is to study the minimum variance analysis (MVA) degeneration problem based on the variance space geometry. We propose a mathematical metric to evaluate the separation of the eigenvalues. In the MVA method, a variance space is obtained geometrically using an ellipsoid where the axes are equal to the square root of the eigenvalues of the covariance matrix. The metric is defined as the product between the geometric flattening of the ellipsoid with respect to the three axes. In this article, we present a statistical analysis applied to the distribution of the eigenvalue ratios and the mathematical metric focussed on the study of several interplanetary coronal mass ejections with and without magnetic clouds (MCs). The results show the non-applicability of the ratio between the intermediate and minimum eigenvalues, as well as that around \(90\%\) of MC events have values in the \([4.5,19.5]\) range for the defined metric. Our metric is compared with others and we show its robustness in indicating the usefulness of the MVA method to identify the axes of MCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Notes

  1. http://www.srl.caltech.edu/ACE/ASC/level2/index.html accessed on May 20, 2019.

  2. http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm accessed on May 20, 2019.

  3. https://wind.gsfc.nasa.gov/mfi/mag_cloud_pub1.html accessed on October 01, 2019.

  4. https://cdaweb.gsfc.nasa.gov/istp_public/ accessed on October 01, 2019.

References

  • Abdi, H., Williams, L.J.: 2010, Principal component analysis. Wires Comput. Stat.2(4), 433. DOI .

    Article  Google Scholar 

  • Bothmer, V., Rust, D.M.: 1997, The field configuration of magnetic clouds and the solar cycle. Trans. Am. Geophys. Union99, 139. DOI . ADS .

    Article  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys.16, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res.93, 7217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.E.: 1991, Magnetic clouds. In: Schwenn, R., Marsch, E. (eds.) Physics of the Inner Heliosphere II21, 152. DOI . ADS .

    Chapter  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock - Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cid, C., Hidalgo, M.A., Nieves-Chinchilla, T., Sequeiros, J., Viñas, A.F.: 2002, Plasma and magnetic field inside magnetic clouds: A global study. Solar Phys.207(1), 187. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dal Lago, A., Gonzalez, W.D., de Gonzalez, A.L.C., Vieira, L.E.A.: 2001, Compression of magnetic clouds in interplanetary space and increase in their geoeffectiveness. J. Atmos. Solar-Terr. Phys.63(5), 451. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Dasso, S., Janvier, M.: 2018, Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds. Astron. Astrophys.619, A139. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., Jamason, P.: 2006, Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res.111(B3), B03405. DOI . ADS .

    Article  ADS  Google Scholar 

  • Echer, E., Alves, M.V., Gonzalez, W.D.: 2005, A statistical study of magnetic cloud parameters and geoeffectiveness. J. Atmos. Solar-Terr. Phys.67(10), 839. DOI . ADS .

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Osherovich, V.A., Burlaga, L.F.: 1995, Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds. J. Geophys. Res.100(A7), 12293. DOI . ADS .

    Article  ADS  Google Scholar 

  • Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: NASA Conf. Pub.228. ADS .

    Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T.: 1987, Criteria of interplanetary parameters causing intense magnetic storms (D\(_{st}<\)-100 nT). Planet. Space Sci.35(9), 1101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P.: 2007, Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation. Adv. Space Res.40, 1881. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hunter, J.D.: 2007, Matplotlib: A 2D graphics environment. Comput. Sci. Eng.9(3), 90. DOI . ADS .

    Article  Google Scholar 

  • Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys.23, 625. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karney, C.F.F., Deakin, R.E.: 2010, F.W. Bessel (1825): The calculation of longitude and latitude from geodesic measurements. Astron. Nachr.331, 852. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Kelly, P.M.: 1977, Solar influence on North Atlantic mean sea level pressure. Nature269(5626), 320. DOI . ADS .

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res.87(A2), 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Behannon, K.W.: 1980, Magnetic field directional discontinuities: 1. Minimum variance errors. J. Geophys. Res.85(A9), 4695. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res.95, 11957. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J.: 2014, A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophys. Res. Lett.41, 769. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lui, A.T.Y.: 2011, Grad-Shafranov reconstruction of magnetic flux ropes in the near-Earth space. Space Sci. Rev.158, 43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K.: 1986, Structure of the interplanetary magnetic clouds and their solar origins. Adv. Space Res.6, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys.25, 2453. DOI . ADS .

    Article  ADS  Google Scholar 

  • McKinney, W.: 2010, Data structures for statistical computing in python. In: van der Walt, S., Millman, J. (eds.) Proc. 9th Python Sci. Conf., 51.

    Google Scholar 

  • Mulligan, T., Russell, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res.106(A6), 10581. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Hidalgo, M.A., Sequeiros, J.: 2005, Magnetic clouds observed at 1 Au during the period 2000-2003. Solar Phys.232, 105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda González, A., Mendes, O., Calzadilla, M.A., Domingues, M.O.: 2013, Spatio-temporal entropy analysis of the magnetic field to help magnetic cloud characterization. J. Geophys. Res.118(9), 5403. DOI . ADS .

    Article  Google Scholar 

  • Ojeda, A., Calzadilla, A., Lazo, B., Alazo, K., Savio, S.: 2005, Analysis of behavior of solar wind parameters under different IMF conditions using nonlinear dynamics techniques. J. Atmos. Solar-Terr. Phys.67, 1859. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda-González, A., Klausner, V., Mendes, O., Domingues, M.O., Prestes, A.: 2017a, Characterization of the complex ejecta measured in situ on 19 – 22 March 2001 by six different methods, Solar Phys.292, 160. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda-González, A., Mendes, O., Calzadilla, A., Domingues, M.O., Prestes, A., Klausner, V.: 2017b, An alternative method for identifying interplanetary magnetic cloud regions. Astrophys. J.837(2), 156. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pearson, K.: 1901, On lines and planes of closest fit to systems of points in space. Phil. Mag.2(11), 559. DOI .

    Article  MATH  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 - 2009): Catalog and summary of properties. Solar Phys.264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Space weather: The solar perspective. Living Rev. Solar Phys.3, 2. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwenn, R., Marsch, E., Jackson, B.V.: 1993, Book-Review - Physics of the inner heliosphere - Part two - Particles waves and turbulence. Solar Phys.145, 405. ADS .

    ADS  Google Scholar 

  • Siscoe, G.L., Suey, R.W.: 1972, Significance criteria for variance matrix applications. J. Geophys. Res.77, 1321. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev.86, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.O., Cahill, J.L.J.: 1967, Magnetopause structure and attitude from explorer 12 observations. J. Geophys. Res.72, 171. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Scheible, M.: 1998, Minimum and Maximum Variance Analysis, ISSI Scientific Rep. Ser.1, 185. ADS .

    Google Scholar 

  • Van der Walt, S., Colbert, S.C., Varoquaux, G.: 2011, The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng.13(2), 22. DOI . ADS .

    Article  Google Scholar 

  • Vandas, M., OdstrčIl, D., Watari, S.: 2002, Three-dimensional MHD simulation of a loop-like magnetic cloud in the solar wind. J. Geophys. Res.107(A9), 1236. DOI . ADS .

    Article  Google Scholar 

Download references

Acknowledgements

R.A. Rosa Oliveira thanks PROSUC-CAPES for the PhD scholarship in the Physics and Astronomy course at UNIVAP. A. Ojeda-González wishes to thank CNPq for financial support (grant 431396/2018-3). In addition, the authors would like to thank the ACE and Wind science team members for the data sets used in this work. V. De la Luz thanks to CONACyT Ciencia Básica (254497) support. We also wish to thank the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemeire Aparecida Rosa Oliveira.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa Oliveira, R.A., da Silva Oliveira, M.W., Ojeda-González, A. et al. New Metric for Minimum Variance Analysis Validation in the Study of Interplanetary Magnetic Clouds. Sol Phys 295, 45 (2020). https://doi.org/10.1007/s11207-020-01610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01610-6

Keywords

Navigation