Skip to main content
Log in

Timing Terminators: Forecasting Sunspot Cycle 25 Onset

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Recent research has demonstrated the existence of a new type of solar event, the “terminator.” Unlike the Sun’s signature events, flares and coronal mass ejections, the terminator most likely originates in the solar interior, at or near the tachocline. The terminator signals the end of a magnetic activity cycle at the Sun’s equator and the start of a sunspot cycle at mid-latitudes. Observations indicate that the time difference between these events is very short, less than a solar rotation, in the context of the sunspot cycle. As the (definitive) start and end point of solar activity cycles the precise timing of terminators should permit new investigations into the meteorology of our star’s atmosphere. In this article we use a standard method in signal processing, the Hilbert transform, to identify a mathematically robust signature of terminators in sunspot records and in radiative proxies. Using a linear extrapolation of the Hilbert phase of the sunspot number and F10.7 cm solar radio flux time series we can achieve higher fidelity historical terminator timing than previous estimates have permitted. Further, this method presents a unique opportunity to project, from analysis of sunspot data, when the next terminator will occur, May 2020 (\(+4\), −1.5 months), and trigger the growth of Sunspot Cycle 25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. And his Hale Prize lecture, St. Louis American Astronomical Society - Solar Physics Division meeting.

  2. The present consecutive active region numbering system only started in January 1972.

References

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-YEAR cycle. Astrophys. J.133, 572. DOI . ADS .

    Article  ADS  Google Scholar 

  • Barnhart, B.L., Eichinger, W.E.: 2011, Analysis of sunspot variability using the Hilbert–Huang transform. Solar Phys.269(2), 439. DOI .

    Article  ADS  Google Scholar 

  • Bracewell, R.N.: 2000, The Fourier Transform and Its Applications, McGraw-Hill, New York, 267.

    Google Scholar 

  • Chapman, S.C., Lang, P.T., Dendy, R.O., Giannone, L., Watkins, N.W.: 2018a, Control system–plasma synchronization and naturally occurring edge localized modes in a tokamak. Phys. Plasmas25, 062511. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chapman, S.C., Lang, P.T., Dendy, R.O., Watkins, N.W., Dunne, M., Giannone, L., ASDEX Upgrade Team, EUROfusion MST1 Team: 2018b, Intrinsic ELMing in ASDEX upgrade and global control system–plasma self-entrainment. Nucl. Fusion58, 126003. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cleveland, W.S.: 1979, Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc.74(368), 829. DOI .

    Article  MathSciNet  MATH  Google Scholar 

  • de Toma, G., Gibson, S., Emery, B., Kozyra, J.: 2010, Solar cycle 23: an unusual solar minimum? AIP Conf. Proc.1216(1), 667. DOI .

    Article  ADS  Google Scholar 

  • Dikpati, M., McIntosh, S.W., Chatterjee, S., Banerjee, D., Yellin-Bergovoy, R., Srivastava, A.: 2019, Triggering the birth of new cycle’s sunspots by solar tsunami. Sci. Rep.9, 2035. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gao, P.X.: 2016, Long-term trend of sunspot numbers. Astrophys. J.830(2), 140. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golub, L., Krieger, A.S., Silk, J.K., Timothy, A.F., Vaiana, G.S.: 1974, Solar X-ray bright points. Astrophys. J. Lett.189, L93. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hara, H., Nakakubo-Morimoto, K.: 2003, Variation of the X-ray bright point number over the solar activity cycle. Astrophys. J.589, 1062. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Kupriyanova, E.G., Ratcliffe, H., Shibasaki, K.: 2015, Multi-mode quasi-periodic pulsations in a solar flare. Astron. Astrophys.574, A53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kuhn, J.R.: 2004, Irradiance and solar cycle variability: clues in cycle phase properties. Adv. Space Res.34(2), 302. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leamon, R.J., McIntosh, S.W., Marsh, D.R.: 2018, Termination of Solar Cycles and Correlated Tropospheric Variability. arXiv e-prints. arXiv . ADS .

  • Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J.156, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res.110, A08107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marple, S.L.: 1999, Computing the discrete-time “analytic” signal via FFT. IEEE Trans. Signal Process.47(9), 2600. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Maunder, E.W.: 1904, Note on the distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc.64, 747. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Gurman, J.B.: 2005, Nine years of EUV bright points. Solar Phys.228, 285. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J.: 2014, On magnetic activity band overlap, interaction, and the formation of complex solar active regions. Astrophys. J. Lett.796, L19. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J.: 2017, Deciphering solar magnetic activity: spotting Solar Cycle 25. Front. Astron. Space Sci.4, 4. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Gurman, J.B., Olive, J.-P., Cirtain, J.W., Hathaway, D.H., Burkepile, J., Miesch, M., Markel, R.S., Sitongia, L.: 2013, Hemispheric asymmetries of solar photospheric magnetism: radiative, particulate, and heliospheric impacts. Astrophys. J.765, 146. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J.792, 12. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett.784, L32. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Krista, L.D., Title, A.M., Hudson, H.S., Riley, P., Harder, J.W., Kopp, G., Snow, M., Woods, T.N., Kasper, J.C., Stevens, M.L., Ulrich, R.K.: 2015, The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nat. Commun.6, 6491. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Cramer, W.J., Pichardo Marcano, M., Leamon, R.J.: 2017, The detection of Rossby-like waves on the Sun. Nat. Astron.1, 0086. DOI . ADS .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Leamon, R.J., Egeland, R., Dikpati, M., Fan, Y., Rempel, M.: 2019, What the sudden death of solar cycles can tell us about the nature of the solar interior. Solar Phys.294(7), 88. DOI .

    Article  ADS  Google Scholar 

  • McNish, A.G., Lincoln, J.V.: 1949, Prediction of sunspot numbers. Eos Trans. AGU30(5), 673. DOI . ADS .

    Article  Google Scholar 

  • Meyer, P., Parker, E.N., Simpson, J.A.: 1956, Solar cosmic rays of February, 1956 and their propagation through interplanetary space. Phys. Rev.104, 768. DOI .

    Article  ADS  Google Scholar 

  • Morgan, H., Taroyan, Y.: 2017, Global conditions in the solar corona from 2010 to 2017. Sci. Adv.3(7), e1602056. DOI .

    Article  ADS  Google Scholar 

  • Paluš, M., Novotná, D.: 1999, Sunspot cycle: a driven nonlinear oscillator? Phys. Rev. Lett.83, 3406. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1955, Hydromagnetic dynamo models. Astrophys. J.122, 293. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Pesnell, W.: 2008, Predictions of Solar Cycle 24. Solar Phys.252, 209. DOI .

    Article  ADS  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J., Hilborn, R.C.: 2002, Synchronization: a universal concept in nonlinear science. Am. J. Phys.70(6), 655. DOI . ADS .

    Article  ADS  Google Scholar 

  • Rial, J.A., Oh, J., Reischmann, E.: 2013, Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat. Geosci.6(4), 289. DOI . ADS .

    Article  ADS  Google Scholar 

  • Savitzky, A., Golay, M.J.E.: 1964, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem.36(8), 1627. DOI .

    Article  ADS  Google Scholar 

  • Schonfeld, S.J., White, S.M., Hock-Mysliwiec, R.A., McAteer, R.T.J.: 2017, The slowly varying corona. I. Daily differential emission measure distributions derived from EVE spectra. Astrophys. J.844(2), 163. DOI .

    Article  ADS  Google Scholar 

  • Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr.21, 233. ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. RJL acknowledges support from NASA’s Living With a Star Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Leamon.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leamon, R.J., McIntosh, S.W., Chapman, S.C. et al. Timing Terminators: Forecasting Sunspot Cycle 25 Onset. Sol Phys 295, 36 (2020). https://doi.org/10.1007/s11207-020-1595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-1595-3

Keywords

Navigation