Skip to main content
Log in

Fizeau Mask Interferometry of Solar Features Using the Multi-application Solar Telescope at the Udaipur Solar Observatory

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Efforts are made to demonstrate high-resolution observations of the solar atmosphere using spatial interferometry. Covering the telescope pupil with a Fizeau mask consisting of two small circular apertures separated by a vector distance known as the baseline is the first step towards interferometric imaging. A mask with two circular holes of diameter 7 cm each and separated by a distance of 19 cm is placed in the pupil plane of the Multi-application solar telescope at Udaipur solar observatory. The fringe pattern observed in the image plane signifies the presence of solar structures with sizes smaller than the fringe period. The study is extended with baselines of 29 cm and 38 cm. It is observed that an increase in the baseline causes a reduction in the fringe period and the fringe contrast. Observations are carried out in two spectral lines/bands, centered at 656.3 nm and 861.0 nm using filters of bandwidth 1 nm and 330 nm, respectively. The effect of bandwidth on the fringe visibility is also discussed based on the bandwidth decorrelation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Baldwin, J.E., Haniff, C.A., Mackay, C.D., Warner, P.J.: 1986, Closure phase in high-resolution optical imaging. Nature320(6063), 595. DOI . ADS .

    Article  ADS  Google Scholar 

  • Baldwin, J.E., Beckett, M.G., Boysen, R.C., Burns, D., Buscher, D.F., Cox, G.C., Haniff, C.A., Mackay, C.D., Nightingale, N.S., Rogers, J., Scheuer, P.A.G., Scott, T.R., Tuthill, P.G., Warner, P.J., Wilson, D.M.A., Wilson, R.W.: 1996, The first images from an optical aperture synthesis array: Mapping of Capella with COAST at two epochs. Astron. Astrophys.306, L13. ADS .

    ADS  Google Scholar 

  • Born, M., Wolf, E.: 1975, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. ADS .

    MATH  Google Scholar 

  • Damé, L.: 1998, Low orbit high resolution solar physics with the solar interferometer. Adv. Space Res.21(1–2), 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Damé, L., Derrien, M.: 2002, Solar physics and interferometry mission (SPI). Adv. Space Res.29(12), 2061. DOI . ADS .

    Article  ADS  Google Scholar 

  • Damé, L., Derrien, M., Kozlowski, M., Merdjane, M.: 1998, Laboratory and sky demonstrations of solar interferometry possibilities. In: Crossroads for European Solar and Heliospheric Physics. Recent Achievements and Future Mission Possibilities, ESA Special Publication417, 345. ADS .

    Google Scholar 

  • Fried, D.L.: 1966, Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am.56(10), 1372. DOI . ADS .

    Article  ADS  Google Scholar 

  • Golay, M.J.E.: 1971, Point arrays having compact, nonredundant autocorrelations. J. Opt. Soc. Am.61(2), 272. DOI .

    Article  Google Scholar 

  • Hanbury Brown, R.: 1956, A test of a new type of stellar interferometer on Sirius. Nature178(4541), 1046. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haniff, C.: 2007, An introduction to the theory of interferometry. New Astron. Rev.51(8–9), 565. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haniff, C.A., Mackay, C.D., Titterington, D.J., Sivia, D., Baldwin, J.E.: 1987, The first images from optical aperture synthesis. Nature328(6132), 694. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harvey, J.W.: 1972, Interferometry applied to visible solar features. Nat. Phys. Sci.235(57), 90. DOI . ADS .

    Article  ADS  Google Scholar 

  • Korff, D.: 1973, Analysis of a method for obtaining near-diffraction-limited information in the presence of atmospheric turbulence. J. Opt. Soc. Am.63(8), 971. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kumar, B., Venkatakrishnan, P., Bayanna, A.R., Venugopalan, K.: 2007, Site characterization using solar H\(\alpha\) images. Solar Phys.241(2), 427. DOI . ADS .

    Article  ADS  Google Scholar 

  • Labeyrie, A.: 1975, Interference fringes obtained on Vega with two optical telescopes. Astrophys. J. Lett.196, L71. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lawson, P.R.: 2000, Principles of Long Baseline Stellar Interferometry. ADS .

    Google Scholar 

  • Lohmann, A.W., Weigelt, G., Wirnitzer, B.: 1983, Speckle masking in astronomy: Triple correlation theory and applications. Appl. Opt.22(24), 4028. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mathew, S.K.: 2009, In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) A New 0.5m Telescope (MAST) for Solar Imaging and Polarimetry, Astronomical Society of the Pacific Conference Series405, 461. ADS .

    Google Scholar 

  • Mathew, S.K., Bayanna, A.R., Tiwary, A.R., Bireddy, R., Venkatakrishnan, P.: 2017, First observations from the Multi-Application Solar Telescope (MAST) narrow-band imager. Solar Phys.292(8), 106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Michelson, A.A.: 1920, On the application of interference methods to astronomical measurements. Astrophys. J.51, 257. DOI . ADS .

    Article  ADS  Google Scholar 

  • Michelson, A.A., Pease, F.G.: 1921, Measurement of the diameter of \(\alpha\) Orionis with the interferometer. Astrophys. J.53, 249. DOI . ADS .

    Article  ADS  Google Scholar 

  • Miller, N.J., Dierking, M.P., Duncan, B.D.: 2007, Optical sparse aperture imaging. Appl. Opt.46(23), 5933. DOI . ADS .

    Article  ADS  Google Scholar 

  • Monnier, J.D.: 2003, Optical interferometry in astronomy. Rep. Prog. Phys.66(5), 789. DOI . ADS .

    Article  ADS  MathSciNet  Google Scholar 

  • Mourard, D., Bosc, I., Labeyrie, A., Koechlin, L., Saha, S.: 1989, The rotating envelope of the hot star gamma Cassiopeiae resolved by optical interferometry. Nature342(6249), 520. DOI . ADS .

    Article  ADS  Google Scholar 

  • Roddier, F.: 1986, Triple correlation as a phase closure technique. Opt. Commun.60(3), 145. DOI . ADS .

    Article  ADS  Google Scholar 

  • Saha, S.K., Venkatakrishnan, P., Jayarajan, A.P., Jayavel, N.: 1987, Astrophotography with high angular and temporal resolution: Preliminary results from the Kavulur experiments. Curr. Sci.56(19), 985.

    Google Scholar 

  • Sridharan, R.: 2001, Techniques for achieving higher spatial resolution. PhD thesis, Bangalore University, Bangalore, India. http://hdl.handle.net/10603/89167 .

  • Tiwary, A.R., Mathew, S.K., Bayanna, A.R., Venkatakrishnan, P., Yadav, R.: 2017, Imaging spectropolarimeter for the multi-application solar telescope at udaipur solar observatory: Characterization of polarimeter and preliminary observations. Solar Phys.292(4), 49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tuthill, P.G., Monnier, J.D., Danchi, W.C.: 1999, A dusty pinwheel nebula around the massive star WR104. Nature398(6727), 487. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tuthill, P.G., Monnier, J.D., Danchi, W.C., Lopez, B.: 2000a, Smoke signals from IRC +10216. I. Milliarcsecond proper motions of the dust. Astrophys. J.543(1), 284. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tuthill, P.G., Monnier, J.D., Danchi, W.C., Wishnow, E.H., Haniff, C.A.: 2000b, Michelson interferometry with the Keck I telescope. Publ. Astron. Soc. Pac.112(770), 555. DOI . ADS .

    Article  ADS  Google Scholar 

  • Venkatakrishnan, P.: 2001, Multi-aperture solar telescope. Bull. Astron. Soc. India29, 467. ADS .

    ADS  Google Scholar 

  • Venkatakrishnan, P., Mathew, S.K., Srivastava, N., Bayanna, A.R., Kumar, B., Ramya, B., Jain, N., Saradava, M.: 2017, The multi aperture solar telescope. Curr. Sci.113(4), 686.

    Article  Google Scholar 

  • von der Luehe, O.: 1984, Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence. J. Opt. Soc. Am. A1, 510. DOI . ADS .

    Article  ADS  Google Scholar 

  • von der Lühe, O.: 1992, In: Sanchez, F., Collados, M., Vazquez, M. (eds.) High Spatial Resolution Techniques, 1. ADS .

    Google Scholar 

  • von der Lühe, O.: 1993, Imaging of the solar surface with interferometric arrays. In: Radick, R.R. (ed.) Real Time and Post Facto Solar Image Correction, 150. ADS .

    Google Scholar 

  • Weigelt, G.P.: 1977, Modified astronomical speckle interferometry “speckle masking”. Opt. Commun.21(1), 55. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zirker, J.B.: 1987, Interferometric imaging: A numerical simulation. Solar Phys.111(2), 235. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zirker, J.B.: 1989, Interferometric imaging – Part two. Solar Phys.120(2), 253. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Ramya Bireddy and Ms. Anisha Kulhari for their support with MAST telescope operations during the observations. We also thank Mr. Mukesh Sardava for helping with fabrication of Fizeau masks. We also thank the referee for the encouraging comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raja Bayanna.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Bandwidth Decorrelation Function for Filters Used in This Work

Appendix: Bandwidth Decorrelation Function for Filters Used in This Work

In stellar interferometry and imaging, the bandwidth decorrelation function \(G(x)\) is defined as the absolute value of the Fourier transform of the function representing the spectral transmission function \(T(k)\) expressed in wavenumber (\(k= 1/\lambda\)) space. Figure 6 shows the near-infrared spectral transmission function of the spectral filter used for NIR observations. The central or mean wavelength of this filter is estimated using:

$$ \bar{\lambda} = \frac{\int^{1200}_{690} \lambda F(\lambda) T(\lambda) \,\textrm{d}\lambda}{\int^{1200}_{690}F(\lambda) T(\lambda)\, \textrm{d}\lambda}, $$
(6)

where \(F(\lambda)\) and \(T(\lambda)\) are the solar terrestrial spectral irradiance, and the spectral transmission in wavelength space, respectively. The limits of integrations indicate wavelength in nm. From this the mean wavelength is estimated as 860.9 nm. The full width at half maximum of this filter measured based on the definition is \({\approx}\,330\) nm.

Figure 6
figure 6

Spectral transmission function of NIR filter used for the observations. The transmission function is shown in wavenumber space. The mean wavelength is estimated as 861 nm. The full width at half maximum of this filter is measured as \({\approx}\,330\) nm.

Figure 7 shows the bandwidth decorrelation function \(G(x)\), estimated as the absolute value of the discrete Fourier transform of \(T(k)\). We note that the first minimum of the bandwidth decorrelation function is around 2250 nm which is close to the coherence length \(\Lambda= {\lambda}^{2}/\Delta\lambda\) (\(= 861\times861/330 = 2246\) nm). In practice, the squared visibility is multiplied by the square of the bandwidth decorrelation function. The value of the bandwidth decorrelation function could be deduced from the two plots shown in Figure 7. The theoretical value of the rms OPD for a given baseline is given by \(0.417\lambda(L/r_{0})^{5/6}\). This is shown in the left panel of Figure 7. The attenuation corresponding to that OPD is then extracted from the right panel of Figure 7. The estimated squared visibilities is divided by the bandwidth decorrelation function to remove the finite bandwidth effect.

Figure 7
figure 7

Left: OPD for a given baseline, estimated theoretically. Right: Bandwidth decorrelation function estimated from the filter transmission function. The attenuation of the power spectra due to finite bandwidth could be determined from these two plots. Baseline ⟶ OPD ⟶ bandwidth decorrelation function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja Bayanna, A., Venkatakrishnan, P., Rengaswamy, S. et al. Fizeau Mask Interferometry of Solar Features Using the Multi-application Solar Telescope at the Udaipur Solar Observatory. Sol Phys 295, 30 (2020). https://doi.org/10.1007/s11207-020-1597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-1597-1

Keywords

Navigation