Skip to main content

Advertisement

Log in

Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer’s disease

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are a group of non-protein coding RNAs that have more than 200 nucleotides. LncRNAs play an important role in the regulation of protein-coding genes at the transcriptional and post-transcriptional levels. They are found in most organs, with a high prevalence in the central nervous system. Accumulating data suggests that lncRNAs are involved in various neurodegenerative disorders, including the onset and progression of Alzheimer’s disease (AD). Recent insights suggest lncRNAs, such as BACE1-AS, 51A, 17A, NDM29 and AS-UCHL1, are dysregulated in AD tissues. Furthermore, there are ongoing efforts to explore the clinical usability of lncRNAs as biomarkers in the disease. In this review, we explore the mechanisms by which aberrant expressions of the most studied lncRNAs contribute to the neuropathologies associated with AD, including amyloid β plaques and neurofibrillary tangles. Understanding the molecular mechanisms of lncRNAs in patients with AD will reveal novel diagnosis strategies and more effective therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams SJ, Crook RJ, Deture M, Randle SJ, Innes AE, Yu XZ, Lin WL, Dugger BN, McBride M, Hutton M, Dickson DW, McGowan E (2009) Overexpression of wild-type murine tau results in progressive tauopathy and neurodegeneration. Am J Pathol 175:1598–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu QR (2011) Identification of novel GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal gyrus of Alzheimer disease. J Biol Chem 286:45093–45102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175

    Article  CAS  PubMed  Google Scholar 

  • Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K (2001) Interaction of tau isoforms with Alzheimer's disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 276:37967–37973

    Article  CAS  PubMed  Google Scholar 

  • Amlie-Wolf A et al. (2019) Inferring the molecular mechanisms of noncoding Alzheimer's disease-associated genetic variants. J Alzheimers Dis

  • Ayupe AC, Tahira AC, Camargo L, Beckedorff FC, Verjovski-Almeida S, Reis EM (2015) Global analysis of biogenesis, stability and sub-cellular localization of lncRNAs mapping to intragenic regions of the human genome. RNA Biol 12:877–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Balietti M, Giuli C, Conti F (2018) Peripheral blood brain-derived Neurotrophic factor as a biomarker of Alzheimer's disease: are there methodological biases? Mol Neurobiol 55:6661–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbero-Camps E, Roca-Agujetas V, Bartolessis I, de Dios C, Fernández-Checa JC, Marí M, Morales A, Hartmann T, Colell A (2018) Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy 14:1129–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basile V, Vicente A, Martignetti JA, Skryabin BV, Brosius J, Kennedy JL (1998) Assignment of the human BC200 RNA gene (BCYRN1) to chromosome 2p16 by radiation hybrid mapping. Cytogenet Cell Genet 82:271–272

    Article  CAS  PubMed  Google Scholar 

  • Berson A, Nativio R, Berger SL, Bonini NM (2018) Epigenetic regulation in neurodegenerative diseases. Trends Neurosci 41:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508

    Article  PubMed  Google Scholar 

  • Bradley LH et al (2010) Dopamine neuron stimulating actions of a GDNF propeptide. PLoS One 5:e9752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buggia-Prevot V, Thinakaran G (2014) Sorting the role of SORLA in Alzheimer's disease. Sci Transl med 6:223fs228

    Article  Google Scholar 

  • Caglayan S et al (2014) Lysosomal sorting of amyloid-beta by the SORLA receptor is impaired by a familial Alzheimer's disease mutation. Sci Transl med 6:223ra220

    Article  CAS  Google Scholar 

  • Caillet-Boudin ML, Buee L, Sergeant N, Lefebvre B (2015) Regulation of human MAPT gene expression. Mol Neurodegener 10:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canugovi C, Misiak M, Ferrarelli LK, Croteau DL, Bohr VA (2013) The role of DNA repair in brain related disease pathology. DNA Repair (Amst) 12:578–587

    Article  CAS  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E, Gustincich S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    Article  CAS  PubMed  Google Scholar 

  • Castelnuovo M, Massone S, Tasso R, Fiorino G, Gatti M, Robello M, Gatta E, Berger A, Strub K, Florio T, Dieci G, Cancedda R, Pagano A (2010) An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. FASEB J 24:4033–4046

    Article  CAS  PubMed  Google Scholar 

  • Chen M (2015) The maze of APP processing in Alzheimer's disease: where did we go wrong in reasoning? Front Cell Neurosci 9:186

    PubMed  PubMed Central  Google Scholar 

  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem 279:13256–13264

    Article  CAS  PubMed  Google Scholar 

  • Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R, Pagano A (2013) An intronic ncRNA-dependent regulation of SORL1 expression affecting Abeta formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis Model Mech 6:424–433

    CAS  PubMed  Google Scholar 

  • Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, Dinger ME, Mattick JS (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res 22:885–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium TEP et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57

    Article  CAS  Google Scholar 

  • Coupland KG, Kim WS, Halliday GM, Hallupp M, Dobson-Stone C, Kwok JB (2016) Role of the Long non-coding RNA MAPT-AS1 in regulation of microtubule associated protein tau (MAPT) expression in Parkinson's disease. PLoS One 11:e0157924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Almeida RA, Fraczek MG, Parker S, Delneri D, O'Keefe RT (2016) Non-coding RNAs and disease: the classical ncRNAs make a comeback. Biochem Soc Trans 44:1073–1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, Åström G, Babina M, Bertin N, Burroughs AM, Carlisle AJ, Daub CO, Detmar M, Deviatiiarov R, Fort A, Gebhard C, Goldowitz D, Guhl S, Ha TJ, Harshbarger J, Hasegawa A, Hashimoto K, Herlyn M, Heutink P, Hitchens KJ, Hon CC, Huang E, Ishizu Y, Kai C, Kasukawa T, Klinken P, Lassmann T, Lecellier CH, Lee W, Lizio M, Makeev V, Mathelier A, Medvedeva YA, Mejhert N, Mungall CJ, Noma S, Ohshima M, Okada-Hatakeyama M, Persson H, Rizzu P, Roudnicky F, Sætrom P, Sato H, Severin J, Shin JW, Swoboda RK, Tarui H, Toyoda H, Vitting-Seerup K, Winteringham L, Yamaguchi Y, Yasuzawa K, Yoneda M, Yumoto N, Zabierowski S, Zhang PG, Wells CA, Summers KM, Kawaji H, Sandelin A, Rehli M, FANTOM Consortium, Hayashizaki Y, Carninci P, Forrest ARR, de Hoon MJL (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35:872–878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends Genet 30:121–123

    Article  CAS  PubMed  Google Scholar 

  • Du Toit A (2013) Non-coding RNA: RNA stability control by pol II. Nat Rev Mol Cell Biol 14:128

    Article  PubMed  CAS  Google Scholar 

  • Ebbesen KK, Hansen TB, Kjems J (2017) Insights into circular RNA biology. RNA Biol 14:1035–1045

    Article  PubMed  Google Scholar 

  • Ecker JR, Bickmore WA, Barroso I, Pritchard JK, Gilad Y, Segal E (2012) ENCODE explained. Nature 489:52–54

    Article  CAS  PubMed  Google Scholar 

  • Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G 3rd, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faghihi MA et al (2010) Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 11:R56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faria MC, Gonçalves GS, Rocha NP, Moraes EN, Bicalho MA, Gualberto Cintra MT, Jardim de Paula J, José Ravic de Miranda LF, Clayton de Souza Ferreira A, Teixeira AL, Gomes KB, Carvalho Md, Sousa LP (2014) Increased plasma levels of BDNF and inflammatory markers in Alzheimer's disease. J Psychiatr Res 53:166–172

    Article  PubMed  Google Scholar 

  • Feng L et al (2018) Plasma long non-coding RNA BACE1 as a novel biomarker for diagnosis of Alzheimer disease. BMC Neurol 18:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forlenza OV, Miranda AS, Guimar I, Talib LL, Diniz BS, Gattaz WF, Teixeira AL (2015) Decreased Neurotrophic support is associated with cognitive decline in non-demented subjects. J Alzheimers Dis 46:423–429

    Article  CAS  PubMed  Google Scholar 

  • Fotuhi SN, Khalaj-Kondori M, Hoseinpour Feizi MA, Talebi M (2019) Long non-coding RNA BACE1-AS may serve as an Alzheimer’s disease blood-based biomarker. J Mol Neurosci

  • Gavazzo P, Vassalli M, Costa D, Pagano A (2013) Novel ncRNAs transcribed by pol III and elucidation of their functional relevance by biophysical approaches. Front Cell Neurosci 7:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    Article  CAS  PubMed  Google Scholar 

  • Gouras GK, Willen K, Faideau M (2014) The inside-out amyloid hypothesis and synapse pathology in Alzheimer's disease. Neurodegener Dis 13:142–146

    Article  CAS  PubMed  Google Scholar 

  • Grimm L, Holinski-Feder E, Teodoridis J, Scheffer B, Schindelhauer D, Meitinger T, Ueffing M (1998) Analysis of the human GDNF gene reveals an inducible promoter, three exons, a triplet repeat within the 3'-UTR and alternative splice products. Hum Mol Genet 7:1873–1886

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Chen C, Wu R, Dong T, Hu X, Yao Y, Zhang Y (2018) Long noncoding RNA EBF3-AS promotes neuron apoptosis in Alzheimer's disease. DNA Cell Biol 37:220–226

    Article  CAS  PubMed  Google Scholar 

  • Guenzl PM, Barlow DP (2012) Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol 9:731–741

    Article  CAS  PubMed  Google Scholar 

  • Gui Y, Liu H, Zhang L, Lv W, Hu X (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6:37043–37053

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo CC, Jiao CH, Gao ZM (2018) Silencing of LncRNA BDNF-AS attenuates Abeta25-35-induced neurotoxicity in PC12 cells by suppressing cell apoptosis and oxidative stress. Neurol Res 40:795–804

    Article  CAS  PubMed  Google Scholar 

  • Herskowitz JH, Offe K, Deshpande A, Kahn RA, Levey AI, Lah JJ (2012) GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid-beta production. Mol Biol Cell 23:2645–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holstege H, van der Lee S, Hulsman M, Wong TH, van Rooij J, Weiss M, Louwersheimer E, Wolters FJ, Amin N, Uitterlinden AG, Hofman A, Ikram MA, van Swieten J, Meijers-Heijboer H, van der Flier W, Reinders MJ, van Duijn C, Scheltens P (2017) Characterization of pathogenic SORL1 genetic variants for association with Alzheimer's disease: a clinical interpretation strategy. Eur J Hum Genet 25:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17

    Article  CAS  PubMed  Google Scholar 

  • Hon C-C et al (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong L, Huang HC, Jiang ZF (2014) Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease. Neurol Res 36:276–282

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Song H, Croteau DL, Akbari M, Bohr VA (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161:83–94

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Wen L, Cao F, Wang Y (2019) Down-regulation of Mir-107 worsen spatial memory by suppressing SYK expression and inactivating NF-KappaB signaling pathway. Curr Alzheimer Res 16:135–145

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen L, Madsen P, Nielsen MS, Geraerts WP, Gliemann J, Smit AB, Petersen CM (2002) The sorLA cytoplasmic domain interacts with GGA1 and −2 and defines minimum requirements for GGA binding. FEBS Lett 511:155–158

    Article  CAS  PubMed  Google Scholar 

  • Jahn H (2013) Memory loss in Alzheimer's disease. Dialogues Clin Neurosci 15:445–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna 16:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Shan K, Qun-Wang X, Zhou RM, Yang H, Liu C, Li YJ, Yao J, Li XM, Shen Y, Cheng H, Yuan J, Zhang YY, Yan B (2016) Long non-coding RNA-MIAT promotes neurovascular remodeling in the eye and brain. Oncotarget 7:49688–49698

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Joubert S, Gour N, Guedj E, Didic M, Guériot C, Koric L, Ranjeva JP, Felician O, Guye M, Ceccaldi M (2016) Early-onset and late-onset Alzheimer's disease are associated with distinct patterns of memory impairment. Cortex 74:217–232

    Article  PubMed  Google Scholar 

  • Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1859:3–15

    Article  CAS  Google Scholar 

  • Ke S, Yang Z, Yang F, Wang X, Tan J, Liao B (2019) Long noncoding RNA NEAT1 aggravates Abeta-induced neuronal damage by targeting miR-107 in Alzheimer's disease. Yonsei Med J 60:640–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellner Y, Godecke N, Dierkes T, Thieme N, Zagrebelsky M, Korte M (2014) The BDNF effects on dendritic spines of mature hippocampal neurons depend on neuronal activity. Front Synaptic Neurosci 6:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khaledi S, Ahmadi S (2016) Amyloid Beta and tau: from physiology to pathology in Alzheimer’s disease. Shefaye Khatam 4:67–88

    Google Scholar 

  • Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & dementia (New York, N Y) 4:575–590

    Article  Google Scholar 

  • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM (2013) Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494:497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane CA, Hardy J, Schott JM (2018) Alzheimer's disease. Eur J Neurol 25:59–70

    Article  CAS  PubMed  Google Scholar 

  • Lee JG, Shin BS, You YS, Kim JE, Yoon SW, Jeon DW, Baek JH, Park SW, Kim YH (2009) Decreased serum brain-derived neurotrophic factor levels in elderly korean with dementia. Psychiatry Investig 6:299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zheng L, Jiang A, Mo Y, Gong Q (2018) Identification of the biological affection of long noncoding RNA BC200 in Alzheimer’s disease. Neuroreport 29:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Liu DY, Zhang L (2019) MicroRNA-132 promotes neurons cell apoptosis and activates tau phosphorylation by targeting GTDC-1 in Alzheimer's disease. Eur Rev Med Pharmacol Sci 23:8523–8532

    PubMed  Google Scholar 

  • Liu T, Huang Y, Chen J, Chi H, Yu Z, Wang J, Chen C (2014) Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1AS expression. Mol Med Rep 10:1275–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Jiao B, Shen L (2018) The epigenetics of Alzheimer's disease: factors and therapeutic implications. Front Genet 9:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Chen Y (2016) Long noncoding RNAs and Alzheimer's disease. Clin Interv Aging 11:867–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10:925–933

    PubMed  Google Scholar 

  • Magistri M, Velmeshev D, Makhmutova M, Faghihi MA (2015) Transcriptomics profiling of Alzheimer's disease reveal neurovascular defects, altered amyloid-beta homeostasis, and deregulated expression of Long noncoding RNAs. J Alzheimers Dis 48:647–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maresova P, Mohelska H, Dolejs J, Kuca K (2015) Socio-economic aspects of Alzheimer's disease. Curr Alzheimer Res 12:903–911

    Article  CAS  PubMed  Google Scholar 

  • Martignetti JA, Brosius J (1993) BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc Natl Acad Sci U S A 90:11563–11567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massone S, Ciarlo E, Vella S, Nizzari M, Florio T, Russo C, Cancedda R, Pagano A (2012) NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid beta secretion. Biochim Biophys Acta 1823:1170–1177

    Article  CAS  PubMed  Google Scholar 

  • Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, Florio T, Dieci G, Cancedda R, Pagano A (2011) 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis 41:308–317

    Article  CAS  PubMed  Google Scholar 

  • Matsushita N, Fujita Y, Tanaka M, Nagatsu T, Kiuchi K (1997) Cloning and structural organization of the gene encoding the mouse glial cell line-derived neurotrophic factor, GDNF. Gene 203:149–157

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol genet 15 spec no 1:R17-29

  • McCartney DL, Stevenson AJ, Walker RM, Gibson J, Morris SW, Campbell A, Murray AD, Whalley HC, Porteous DJ, McIntosh A, Evans KL, Deary IJ, Marioni RE (2018) Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer's disease. Alzheimers Dement (Amst) 10:429–437

    Article  Google Scholar 

  • McMullen JR, Drew BG (2016) Long non-coding RNAs (lncRNAs) in skeletal and cardiac muscle: potential therapeutic and diagnostic targets? Clin Sci (Lond) 130:2245–2256

    Article  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105:716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millan MJ (2014) The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity? Dialogues Clin Neurosci 16:373–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Millan MJ (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: an integrative review. Prog Neurobiol 156:1–68

    Article  CAS  PubMed  Google Scholar 

  • Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der Brug M, Wahlestedt C (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30:453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrak RE, Griffin WS (2001) Interleukin-1, neuroinflammation, and Alzheimer's disease. Neurobiol Aging 22:903–908

    Article  CAS  PubMed  Google Scholar 

  • Muller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18:281–298

    Article  PubMed  CAS  Google Scholar 

  • Mus E, Hof PR, Tiedge H (2007) Dendritic BC200 RNA in aging and in Alzheimer's disease. Proc Natl Acad Sci U S A 104:10679–10684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31:4020–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640

    Article  CAS  PubMed  Google Scholar 

  • Nelson PT, Wang WX (2010) MiR-107 is reduced in Alzheimer's disease brain neocortex: validation study. J Alzheimers Dis 21:75–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 34:185–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parenti R, Paratore S, Torrisi A, Cavallaro S (2007) A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta-amyloid-induced apoptosis. Eur J Neurosci 26:2444–2457

    Article  PubMed  Google Scholar 

  • Peric A, Annaert W (2015) Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol 129:363–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohanka M (2014) Alzheimer s disease and oxidative stress: a review. Curr Med Chem 21:356–364

    Article  CAS  PubMed  Google Scholar 

  • Quan M, Chen J, Zhang D (2015) Exploring the secrets of long noncoding RNAs. Int J Mol Sci 16:5467–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos AD et al (2013) Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 12:616–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid F, Shah A, Shan G (2016) Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinformatics 14:73–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Riva P, Ratti A, Venturin M (2016) The Long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res 13:1219–1231

    Article  CAS  PubMed  Google Scholar 

  • Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song YQ, Andersen OM, Willnow TE, Graff-Radford N, Petersen RC, Dickson D, der S, Fraser PE, Schmitt-Ulms G, Younkin S, Mayeux R, Farrer LA, St George-Hyslop P (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salta E, De Strooper B (2017) Noncoding RNAs in neurodegeneration. Nat Rev Neurosci 18:627–640

    Article  CAS  PubMed  Google Scholar 

  • Scheuermann JC, Boyer LA (2013) Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 32:1805–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J, Wolkenhauer O, Willnow TE (2012) Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease. EMBO J 31:187–200

    Article  CAS  PubMed  Google Scholar 

  • Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, Willnow TE (2007) SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 282:32956–32964

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med

  • Shi C, Zhang L, Qin C (2017) Long non-coding RNAs in brain development, synaptic biology, and Alzheimer's disease. Brain Res Bull 132:160–169

    Article  CAS  PubMed  Google Scholar 

  • Shinohara M, Tachibana M, Kanekiyo T, Bu G (2017) Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 58:1267–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu B, Zhang X, Du G, Fu Q, Huang L (2018) MicroRNA-107 prevents amyloid-beta-induced neurotoxicity and memory impairment in mice. Int J Mol Med 41:1665–1672

    CAS  PubMed  Google Scholar 

  • Sierksma A et al (2018) Deregulation of neuronal miRNAs induced by amyloid-beta or TAU pathology. Mol Neurodegener 13:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa LJ, Caceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A (2017) The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J Neurochem 143:11–29

    Article  CAS  PubMed  Google Scholar 

  • Spadaro PA, Bredy TW (2012) Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet 3:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spreafico M, Grillo B, Rusconi F, Battaglioli E, Venturin M (2018) Multiple layers of CDK5R1 regulation in Alzheimer's disease implicate Long non-coding RNAs. Int J Mol Sci 19

  • Sun Q, Hao Q, Prasanth KV (2018) Nuclear Long noncoding RNAs: key regulators of gene expression. Trends Genet 34:142–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateishi S, Sakuraba Y, Masuyama S, Inoue H, Yamaizumi M (2000) Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens. Proc Natl Acad Sci U S A 97:7927–7932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thal DR, Fandrich M (2015) Protein aggregation in Alzheimer's disease: Abeta and tau and their potential roles in the pathogenesis of AD. Acta Neuropathol 129:163–165

    Article  PubMed  Google Scholar 

  • Tiedge H, Chen W, Brosius J (1993) Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J Neurosci 13:2382–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita S, Kirino Y, Suzuki T (1998) Cleavage of Alzheimer's amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J Biol Chem 273:6277–6284

  • Tramutola A, Di Domenico F, Barone E, Perluigi M, Butterfield DA (2016) It is all about (U)biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxidative Med Cell Longev 2016:2756068

    Article  CAS  Google Scholar 

  • Van Gool B et al (2019) LRP1 has a predominant role in production over clearance of Abeta in a mouse model of Alzheimer's disease. Mol Neurobiol 56:7234–7245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vardarajan BN, Zhang Y, Lee JH, Cheng R, Bohm C, Ghani M, Reitz C, Reyes-Dumeyer D, Shen Y, Rogaeva E, St George-Hyslop P, Mayeux R (2015) Coding mutations in SORL1 and Alzheimer disease. Ann Neurol 77:215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008) The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Zhang M, Liu H (2019a) LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer's disease. Biosci Biotechnol Biochem 83:609–621

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhao Y, Xu N, Zhang S, Wang S, Mao Y, Zhu Y, Li B, Jiang Y, Tan Y, Xie W, Yang BB, Zhang Y (2019b) NEAT1 regulates neuroglial cell mediating Abeta clearance via the epigenetic regulation of endocytosis-related genes expression. Cell Mol Life Sci 76:3005–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361

    Article  CAS  PubMed  Google Scholar 

  • West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, Tolstorukov MY, Kingston RE (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willnow TE, Andersen OM (2013) Sorting receptor SORLA--a trafficking path to avoid Alzheimer disease. J Cell Sci 126:2751–2760

    CAS  PubMed  Google Scholar 

  • Wilusz JE (2016) Circular RNAs: unexpected outputs of many protein-coding genes. RNA Biol 14:1007–1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilusz JE (2018) A 360 degrees view of circular RNAs: from biogenesis to functions. Wiley Interdiscip Rev RNA 9:e1478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A (2013) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97:69–80

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Sweeney D, Wang R, Thinakaran G, Lo AC, Sisodia SS, Greengard P, Gandy S (1997) Generation of Alzheimer beta-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc Natl Acad Sci U S A 94:3748–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka Y, Faghihi MA, Magistri M, Alvarez-Garcia O, Lotz M, Wahlestedt C (2015) Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep 11:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Chen B, Yao X, Lei Y, Ou F, Huang F (2019) Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer's disease through inactivating the PI3K/Akt signaling pathway. J Cell Biochem 120:18053–18065

    Article  CAS  PubMed  Google Scholar 

  • Yin RH, Yu JT, Tan L (2015) The role of SORL1 in Alzheimer's disease. Mol Neurobiol 51:909–918

    Article  CAS  PubMed  Google Scholar 

  • Zagrebelsky M, Godecke N, Remus A, Korte M (2018) Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons. Brain Struct Funct 223:3689–3709

    Article  CAS  PubMed  Google Scholar 

  • Zaletel I, Schwirtlich M, Perovic M, Jovanovic M, Stevanovic M, Kanazir S, Puskas N (2018) Early impairments of hippocampal neurogenesis in 5xFAD mouse model of Alzheimer's disease are associated with altered expression of SOXB transcription factors. J Alzheimers Dis 65:963–976

    Article  CAS  PubMed  Google Scholar 

  • Zampetaki A, Mayr M (2017) Long noncoding RNAs and angiogenesis: regulatory information for chromatin remodeling. Circulation 136:80–82

    Article  PubMed  Google Scholar 

  • Zeng T, Ni H, Yu Y, Zhang M, Wu M, Wang Q, Wang L, Xu S, Xu Z, Xu C, Xiong J, Jiang J, Luo Y, Wang Y, Liu H (2019) BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs. J Chem Neuroanat 98:87–96

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Z, Pei Y, Yang W, Xie C, Long S (2018) MicroRNA-322 cluster promotes tau phosphorylation via targeting brain-derived Neurotrophic factor. Neurochem Res 43:736–744

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Fang Y, Cheng X, Lian YJ, Xu HL (2019) Silencing of Long noncoding RNA SOX21-AS1 relieves neuronal oxidative stress injury in mice with Alzheimer's disease by Upregulating FZD3/5 via the Wnt signaling pathway. Mol Neurobiol 56:3522–3537

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Cai F, Zhang S, Zhang S, Song W (2014) Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo. Sci Rep 4:7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tao Y, Liao Q (2017) Long noncoding RNA: a crosslink in biological regulatory network. Brief Bioinform

  • Zhang Z (2016) Long non-coding RNAs in Alzheimer's disease. Curr Top Med Chem 16:511–519

    Article  CAS  PubMed  Google Scholar 

  • Zhao MY, Wang GQ, Wang NN, Yu QY, Liu RL, Shi WQ (2019) The long-non-coding RNA NEAT1 is a novel target for Alzheimer's disease progression via miR-124/BACE1 axis. Neurol Res 41:489–497

    Article  PubMed  Google Scholar 

  • Zhao ZB, Wu L, Xiong R, Wang LL, Zhang B, Wang C, Li H, Liang L, Chen SD (2014) MicroRNA-922 promotes tau phosphorylation by downregulating ubiquitin carboxy-terminal hydrolase L1 (UCHL1) expression in the pathogenesis of Alzheimer's disease. Neuroscience 275:232–237

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Xu J (2015) Identification of Alzheimer's disease-associated long noncoding RNAs. Neurobiol Aging 36:2925–2931

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. S. A. and M. Z. performed the literature search. S. A. M. Z. And S. B. drafted the manuscript. S. A. and S. B. critically revised the work.

Corresponding author

Correspondence to Shamseddin Ahmadi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest or other disclosures.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, S., Zobeiri, M. & Bradburn, S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer’s disease. Metab Brain Dis 35, 681–693 (2020). https://doi.org/10.1007/s11011-020-00564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00564-9

Keywords

Navigation