Skip to main content

Advertisement

Log in

Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aligholi H et al (2014) A new and safe method for stereotactically harvesting neural stem/progenitor cells from the adult rat subventricular zone. J Neurosci Methods 225:81–89

    PubMed  Google Scholar 

  • Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758

    PubMed  Google Scholar 

  • Arias-Carrión O, Yuan T-F (2009) Autologous neural stem cell transplantation: a new treatment option for Parkinson’s disease? Med Hypotheses 73:757–759

    PubMed  Google Scholar 

  • Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp: JoVE 45:2393

    Google Scholar 

  • Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    PubMed  PubMed Central  Google Scholar 

  • Bakshi A, Hunter C, Swanger S, Lepore A, Fischer I (2004) Minimally invasive delivery of stem cells for spinal cord injury: advantages of the lumbar puncture technique. J Neurosurg Spine 1:330–337

    PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21

    CAS  PubMed  Google Scholar 

  • Bazrafkan M, Nikmehr B, Shahverdi A, Hosseini SR, Hassani F, Poorhassan M, Mokhtari T, Abolhassani F, Choobineh H, Beyer C, Hassanzadeh G (2018) Lipid peroxidation and its role in the expression of NLRP1a and NLRP3 genes in testicular tissue of male rats: a model of spinal cord injury. Iran Biomed J 22:151–159

    PubMed  PubMed Central  Google Scholar 

  • Bonner JF, Connors TM, Silverman WF, Kowalski DP, Lemay MA, Fischer I (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675–4686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q-l, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167:48–58

    CAS  PubMed  Google Scholar 

  • Caruso Bavisotto C et al (2019) Extracellular vesicle-mediated cell–cell communication in the nervous system: focus on neurological diseases. Int J Mol Sci 20:434

    PubMed Central  Google Scholar 

  • Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Ségaliny A, Riazifar M, Pham V, Digman MA, Pone EJ, Zhao W (2016) Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng 9:509–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Ji H, Zhang M, Liu Z, Lao L, Deng C, Chen J, Zhong G (2017) An agonist of the protective factor SIRT1 improves functional recovery and promotes neuronal survival by attenuating inflammation after spinal cord injury. J Neurosci 37:2916–2930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng P, Kuang F, Zhang H, Ju G, Wang J (2014) Beneficial effects of thymosin β4 on spinal cord injury in the rat. Neuropharmacology 85:408–416

    CAS  PubMed  Google Scholar 

  • Choobineh H, Gilani MAS, Pasalar P, Jahanzad I, Ghorbani R, Hassanzadeh G (2016) The effects of testosterone on oxidative stress markers in mice with spinal cord injuries. Int J Fertil Steril 10:87–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW (2008) A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci 28:3404–3414

    PubMed  PubMed Central  Google Scholar 

  • de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29:1251–1261

    PubMed  PubMed Central  Google Scholar 

  • de Rivero Vaccari JP, Bastien D, Yurcisin G, Pineau I, Dietrich WD, de Koninck Y, Keane RW, Lacroix S (2012) P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci 32:3058–3066

    PubMed  PubMed Central  Google Scholar 

  • Doeppner TR et al (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4:1131–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farahabadi A, Akbari M, Amini Pishva A, Zendedel A, Arabkheradmand A, Beyer C, Dashti N, Hassanzadeh G (2016) Effect of progesterone therapy on TNF-α and iNOS gene expression in spinal cord injury model. Acta Med Iran 54:345–351

    PubMed  Google Scholar 

  • Fischer I (2000) Candidate cells for transplantation into the injured CNS. Prog Brain Res 128:253–257

    CAS  PubMed  Google Scholar 

  • Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffari N et al (2018) Antioxidative and anti-inflammatory effects of Cichorium intybus L. seed extract in ischemia/reperfusion injury model of rat spinal cord. J Contemp Med Sci 4:2415

    Google Scholar 

  • György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    PubMed  PubMed Central  Google Scholar 

  • Han D, Wu C, Xiong Q, Zhou L, Tian Y (2015) Anti-inflammatory mechanism of bone marrow mesenchymal stem cell transplantation in rat model of spinal cord injury. Cell Biochem Biophys 71:1341–1347

    CAS  PubMed  Google Scholar 

  • He Q, Li Z, Wang Y, Hou Y, Li L, Zhao J (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215

    CAS  PubMed  Google Scholar 

  • Hernandez J, Torres-Espin A, Navarro X (2011) Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Curr Stem Cell Res Ther 6:273–287

    CAS  PubMed  Google Scholar 

  • Hong C-S, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, Boyiadzis M (2017) Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Sci Rep 7:14684

    PubMed  PubMed Central  Google Scholar 

  • Huang J-H et al (2017) Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J Neurotrauma 34:3388–3396

    PubMed  Google Scholar 

  • Iessi E, Logozzi M, Lugini L, Azzarito T, Federici C, Spugnini EP, Mizzoni D, di Raimo R, Angelini DF, Battistini L, Cecchetti S, Fais S (2017) Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: a new prototype for theranostics of tumors. J Enzyme Inhib Med Chem 32:648–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Li M, He F, Zhou S, Zhu L (2017) Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 14:207

    PubMed  PubMed Central  Google Scholar 

  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead C, Fehlings M (2006a) Transplants of adult neural precursors in combination with growth factors and minocycline promote successful remyelination and neurobehavioral recovery after spinal cord injury. J Neurotrauma 23:785–785

    Google Scholar 

  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006b) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26:3377–3389

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khayrullina G, Bermudez S, Byrnes KR (2015) Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation 12:172

    PubMed  PubMed Central  Google Scholar 

  • Kim D-k, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ (2016) Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci 113:170–175

    CAS  PubMed  Google Scholar 

  • Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9:1125–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W et al (2018) Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 36:469–484

    PubMed  Google Scholar 

  • Mankan AK, Dau T, Jenne D, Hornung V (2012) The NLRP3/ASC/Caspase-1 axis regulates IL-1β processing in neutrophils. Eur J Immunol 42:710–715

    CAS  PubMed  Google Scholar 

  • Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–1057

    CAS  PubMed  Google Scholar 

  • McCulloh CJ, Olson JK, Wang Y, Zhou Y, Tengberg NH, Deshpande S, Besner GE (2018) Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J Pediatr Surg 53:1215–1220

    PubMed  PubMed Central  Google Scholar 

  • Mitsui T, Shumsky JS, Lepore AC, Murray M, Fischer I (2005) Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J Neurosci 25:9624–9636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mligiliche NL, Xu Y, Matsumoto N, Ide C (2005) Survival of neural progenitor cells from the subventricular zone of the adult rat after transplantation into the host spinal cord of the same strain of adult rat. Anat Sci Int 80:229–234

    PubMed  Google Scholar 

  • Mo L-J et al (2018) Exosome-packaged miR-1246 contributes to bystander DNA damage by targeting LIG4. Br J Cancer 119:492–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamadi Y, Moghahi SMHN, Mousavi M, Borhani-Haghighi M, Abolhassani F, Kashani IR, Hassanzadeh G (2019) Intrathecal transplantation of Wharton’s jelly mesenchymal stem cells suppresses the NLRP1 inflammasome in the rat model of spinal cord injury. J Chem Neuroanat 97:1–8

    CAS  PubMed  Google Scholar 

  • Morel O, Toti F, Hugel B, Freyssinet J-M (2004) Cellular microparticles: a disseminated storage pool of bioactive vascular effectors. Curr Opin Hematol 11:156–164

    CAS  PubMed  Google Scholar 

  • Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A (2018) Inflammasome: its role in traumatic brain and spinal cord injury. J Cell Physiol 233:5160–5169

    CAS  PubMed  Google Scholar 

  • Oka S, Honmou O, Akiyama Y, Sasaki M, Houkin K, Hashi K, Kocsis JD (2004) Autologous transplantation of expanded neural precursor cells into the demyelinated monkey spinal cord. Brain Res 1030:94–102

    CAS  PubMed  Google Scholar 

  • Pannu R, Barbosa E, Singh AK, Singh I (2005) Attenuation of acute inflammatory response by atorvastatin after spinal cord injury in rats. J Neurosci Res 79:340–350

    CAS  PubMed  Google Scholar 

  • Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B (2009) Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine 34:328–334

    PubMed  PubMed Central  Google Scholar 

  • Properzi F, Ferroni E, Poleggi A, Vinci R (2015) The regulation of exosome function in the CNS: implications for neurodegeneration Swiss medical weekly 12;145:w14204

  • Reier PJ (2004) Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx 1:424–451

    PubMed  PubMed Central  Google Scholar 

  • Ren K (2018) Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology 107(3):271–284

    PubMed  Google Scholar 

  • Ren Z, Zhou J, Xiong Z, Zhu F, Guo X (2019) Effect of exosomes derived from MiR-133b-modified ADSCs on the recovery of neurological function after SCI. Eur Rev Med Pharmacol Sci 23:52–60

    PubMed  Google Scholar 

  • Rivero Vaccari JP et al (2016) Exosome-mediated inflammasome signaling after central nervous system injury. J Neurochem 136:39–48

    PubMed  Google Scholar 

  • Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    CAS  PubMed  Google Scholar 

  • Sipski ML, Richards JS (2006) Spinal cord injury rehabilitation: state of the science. Am J Phys Med Rehabil 85:310–342

    PubMed  Google Scholar 

  • Snyder EY, Teng YD (2012) Stem cells and spinal cord repair. N Engl J Med 366:1940–1942

    CAS  PubMed  Google Scholar 

  • Stirling DP et al (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24:2182–2190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng YD et al (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101:3071–3076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torralba D et al (2018) Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 9:2658

    PubMed  PubMed Central  Google Scholar 

  • Van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705

    PubMed  Google Scholar 

  • Verma M, Lam TK, Hebert E, Divi RL (2015) Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 15:6

    PubMed  PubMed Central  Google Scholar 

  • Vogel A, Upadhya R, Shetty AK (2018) Neural stem cell derived extracellular vesicles: attributes and prospects for treating neurodegenerative disorders. EBioMedicine 8:273–282

    Google Scholar 

  • Wang Y, Wang J, Yang H, Zhou J, Feng X, Wang H, Tao Y (2015) Necrostatin-1 mitigates mitochondrial dysfunction post-spinal cord injury. Neuroscience 289:224–232

    CAS  PubMed  Google Scholar 

  • Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:1711–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yip PK, Malaspina A (2012) Spinal cord trauma and the molecular point of no return. Mol Neurodegener 7:6

    PubMed  PubMed Central  Google Scholar 

  • Zendedel A, Johann S, Mehrabi S, Joghataei M-t, Hassanzadeh G, Kipp M, Beyer C (2016) Activation and regulation of NLRP3 inflammasome by intrathecal application of SDF-1a in a spinal cord injury model. Mol Neurobiol 53:3063–3075

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122:856–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han C, Cai D (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature 548:52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang X et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by Tehran University of Medical Sciences (No. 97-01-103-37391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Hassanzadeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, I., Ijaz, S., Mokhtari, T. et al. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 35, 809–818 (2020). https://doi.org/10.1007/s11011-020-00563-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00563-w

Keywords

Navigation