Skip to main content
Log in

h-MoO3 phase transformation by four thermal analysis techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Molybdenum trioxide (MoO3) has been studied by four thermal analysis techniques. The as-synthesized material has hexagonal structure (h-MoO3). The phase change in the material studied using four thermal analysis techniques: thermogravimetric analysis, differential scanning calorimetry (DSC), thermomechanical analysis, and dynamic mechanical analysis. Crystallography phase transformation of h-MoO3 was found between 675 and 701 K by these techniques. DSC technique provided the highest detection sensitivity at about 690 K since the metastable monoclinic phase (β-MoO3) transformation could be observed before reaching the stable orthorhombic (α-MoO3) phase. The crystallographic phases of particles and morphologies were confirmed by X-ray diffraction and scanning electron microscopy techniques. The h-MoO3 was proposed as a standard sample to validate the operations of the thermal analysis instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chiang TH, Yeh HC. The synthesis of α-MoO3 by ethylene glycol. Materials. 2013;6(10):4609–25.

    Article  Google Scholar 

  2. Phuc NHH, et al. Simple method to prepare new structure of metastable molybdenum (VI) oxide. Mater Lett. 2012;76:173–6.

    Article  CAS  Google Scholar 

  3. Li T, et al. Nanobelt-assembled nest-like MoO3 hierarchical structure: hydrothermal synthesis and gas-sensing properties. Mater Lett. 2015;160:476–9.

    Article  CAS  Google Scholar 

  4. Jiao L, et al. A novel method for synthesis of microstructure MoO3. Mater Lett. 2005;59(24–25):3112–4.

    Article  CAS  Google Scholar 

  5. Niederberger M, et al. Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. J Mater Chem. 2001;11(7):1941–5.

    Article  CAS  Google Scholar 

  6. Liu T, Xie Y, Chu B. Use of block copolymer micelles on the formation of hollow MoO3 nanospheres. Langmuir. 2000;16(23):9015–22.

    Article  CAS  Google Scholar 

  7. Antonelli DM, Trudeau M. Phase changes and electronic properties in toroidal mesoporous molybdenum oxides. Angew Chem Int Ed. 1999;38(10):1471–5.

    Article  CAS  Google Scholar 

  8. Sui L, et al. Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor. Sens Actuators B Chem. 2015;208:406–14.

    Article  CAS  Google Scholar 

  9. Hartl M, Daemen L, Lunk JH, Hartl H, Frisk AT, Shendervich I, Eckelt R. The extended family of hexagonal molybdenum oxide (No. LA-UR-09-01729; LA-UR-09-1729). Los Alamos National Lab. (LANL), Los Alamos, NM (United States); 2009.

  10. Prakash NG, et al. High-performance one dimensional α-MoO3 nanorods for supercapacitor applications. Ceram Int. 2018;44:9967–75.

    Article  CAS  Google Scholar 

  11. Zheng L, et al. Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic, and electrochromic properties. Chem Mater. 2009;21(23):5681–90.

    Article  CAS  Google Scholar 

  12. Thangasmy P, Shanmugapriya V, Sathish M. The one-dimensional growth of hexagonal rods of metastable h-MoO3 using one-pot, rapid and environmentally benign supercritical fluid processing. Phys E. 2018;99:189–93.

    Article  Google Scholar 

  13. Lunk H-J, et al. “Hexagonal molybdenum trioxide” known for 100 years and still a fount of new discoveries. Inorg Chem. 2010;49(20):9400–8.

    Article  CAS  Google Scholar 

  14. Paraguay-Delgado F, et al. Optimization of the synthesis of α-MoO3 nanoribbons and hydrodesulfurization (HDS) catalyst test. J Nanosci Nanotechnol. 2007;7(10):3677–83.

    Article  CAS  Google Scholar 

  15. Dhage SR, Hassan MS, Yang O-B. Low-temperature fabrication of hexagon shaped h-MoO3 nanorods and its phase transformation. Mater Chem Phys. 2009;114(2–3):511–4.

    Article  CAS  Google Scholar 

  16. Irmawati R, Shafizah M. The production of high purity hexagonal MoO3 through the acid washing of as-prepared solids. Int J Basic Appl Sci. 2009;9:241–4.

    Google Scholar 

  17. Dastan D. Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl Phys A. 2017;123(11):699.

    Article  Google Scholar 

  18. Dastan D, Chaure N, Kartha M. Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron. 2017;28(11):7784–96.

    Article  CAS  Google Scholar 

  19. Felder JB. Hydrothermal synthesis: a gateway to metastable crystals with usual properties. Ph.D. Thesis. University of South Carolina; 2018.

  20. Wang S, et al. Shape tunable synthesis of perovskite structured rare-earth chromites RECrO3 via a mild hydrothermal method. Cryst Eng Commun. 2017;19:6436–42.

    Article  CAS  Google Scholar 

  21. Chang KB, et al. Hydrothermal crystal growth, piezoelectricity and triboluminescence of KNaNbOF5. J Solid State Chem. 2016;236:78–82.

    Article  CAS  Google Scholar 

  22. Santos-Beltran A, et al. Heat treatment effect of MoO3 on the MB removal and its reuse. J Phys Chem Solids. 2018;121:266–75.

    Article  CAS  Google Scholar 

  23. Chithambararaj A, Rajeswari Yogamalar N, Bose AC. Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: new findings on crystal-structure-dependent charge transport. Cryst Growth Des. 2016;16(4):1984–95.

    Article  CAS  Google Scholar 

  24. Hanafi ZM, Khilla MA, Askar MH. The thermal decomposition of ammonium heptamolybdate. Thermochim Acta. 1981;45(3):221–32.

    Article  CAS  Google Scholar 

  25. Chithambararaj A, Bose AC. Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. J Alloys Compd. 2011;509(31):8105–10.

    Article  CAS  Google Scholar 

  26. Khalameida SV, et al. Chemical and phase transformation in the V2O5–(NH4)2 Mo2O7 system during the mechanochemical treatment in various media. J Therm Anal Calorim. 2010;101(3):823–32.

    Article  CAS  Google Scholar 

  27. Khalameida S, et al. Physical–chemical transformations in the system V2O5/(NH4)2Mo2O7 under hydrothermal conditions. Open Chem. 2014;12(2):140–52.

    CAS  Google Scholar 

  28. Ramana CV, et al. Low-temperature synthesis of morphology-controlled metastable hexagonal molybdenum trioxide (MoO3). Solid State Commun. 2009;149(1–2):6–9.

    Article  CAS  Google Scholar 

  29. Wu Z, et al. Ultrasonic-assisted preparation of metastable hexagonal MoO3 nanorods and their transformation to microbelts. Ultrason Sonochem. 2011;18(1):288–92.

    Article  CAS  Google Scholar 

  30. Song Y, et al. Aqueous synthesis of molybdenum trioxide (h-MoO3, α-MoO3·H2O, and h-/α-MoO3 composites) and their photochromic properties study. J Alloys Compd. 2017;693:1290–6.

    Article  CAS  Google Scholar 

  31. Mizushima T, et al. Soft chemical transformation of α-MoO3 to β-MoO3 as a catalyst for vapor-phase oxidation of methanol. Catal Commun. 2011;13(1):10–3.

    Article  CAS  Google Scholar 

  32. Pham TTP, et al. Facile method for synthesis of nanosized β-MoO3 and their catalytic behavior for selective oxidation of methanol to formaldehyde. Adv Nat Sci Nanosci Nanotechnol. 2015;6(4):045010.

    Article  Google Scholar 

  33. Peng Z, Redfern SAT. Mechanical properties of quartz at the α-β phase transition: implications for tectonic and seismic anomalies. Geochem Geophys Geosyst. 2013;14(1):18–28.

    Article  Google Scholar 

  34. Dong Y, et al. Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci. 2004;93(4):1553–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank and acknowledge L. de La Torre for his technical analysis. Thanks to W. Antunez, K. Campos, I. Estrada G. and E. Lestarjet for their help by SEM and XRD data acquisition, and Nanotech Lab, CIMAV, Chihuahua, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lardizábal-G.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paraguay-Delgado, F., Mendoza Duarte, M.E., Kalu, O. et al. h-MoO3 phase transformation by four thermal analysis techniques. J Therm Anal Calorim 140, 735–741 (2020). https://doi.org/10.1007/s10973-019-08842-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08842-0

Keywords

Navigation