Skip to main content
Log in

Potential of prompt \(\gamma \)-ray emission studies in fast-neutron induced fission: a first step

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Prompt \(\gamma \)-ray spectra emitted in fast-neutron induced fission of \(^{239}\)Pu have been recently measured by using the LICORNE directional neutron source at E\(_n\) = 1.8 MeV. The results are used in parallel with the measurements of fast-neutron induced fission of \(^{238}\)U and spontaneous fission of \(^{252}\)Cf to assess the potential of such reactions and observables, in contributing to the understanding of fission. The \(\gamma \)-ray spectra were measured and analyzed under similar conditions, allowing a consistent and robust comparison between the three systems. They are further compared to Monte–Carlo simulations based on two widely-used semi-empirical codes, FREYA and GEF. Differences in the low and high energy portions of the spectrum are interpreted based on simple arguments involving nuclear structure and evaporation effects. The significance and potential of experimental campaigns of this kind, as well as current limitations, are highlighted, together with straightforward but mandatory extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data are available from the authors upon request.]

References

  1. A.N. Andreyev, K. Nishio, K.-H. Schmidt, Rep. Progr. Phys. 81, 016301 (2018)

    ADS  MathSciNet  Google Scholar 

  2. K.-H. Schmidt, B. Jurado, Rep. Progr. Phys. 81, 106301 (2018)

    ADS  Google Scholar 

  3. O. Litaize, O. Serot, Phys. Rev. C 82, 054616 (2010)

    ADS  Google Scholar 

  4. S. Lemaire et al., Phys. Rev. C 72, 024601 (2005)

    ADS  Google Scholar 

  5. P. Talou et al., Phys. Rev. C 83, 064612 (2011)

    ADS  Google Scholar 

  6. B. Becker et al., Phys. Rev. C 87, 014617 (2013)

    ADS  Google Scholar 

  7. R. Vogt et al., Phys. Rev. C 85, 024608 (2012)

    ADS  Google Scholar 

  8. R. Vogt et al., Phys. Rev. C 87, 044602 (2013)

    ADS  Google Scholar 

  9. O. Litaize et al., Eur. Phys. J. Web. Conf. 169, 00012 (2018)

    Google Scholar 

  10. K.-H. Schmidt et al., Nucl. Data Sheets 131, 107 (2016)

    ADS  Google Scholar 

  11. P. Talou et al., Eur. Phys. J. A 54, 9 (2018)

    ADS  Google Scholar 

  12. http://www.oecd-nea.org/dbdata/hprl

  13. A. Oberstedt et al., Phys. Rev. C 87, 051602(R) (2013)

    ADS  Google Scholar 

  14. S. Oberstedt et al., Phys. Rev. C 90, 024618 (2014)

    ADS  Google Scholar 

  15. M. Lebois et al., Phys. Rev. C 92, 034618 (2015)

    ADS  Google Scholar 

  16. A. Gatera et al., Phys. Rev. C 95, 064609 (2017)

    ADS  Google Scholar 

  17. S. Oberstedt et al., Eur. Phys. J. A 51, 178 (2015)

    ADS  Google Scholar 

  18. L. Qi, Measurements of prompt \(\gamma \) rays emitted in fission of \(^{238}\)U and \(^{239}\)Pu induced by fast neutrons from the LICORNE neutron source. PhD Thesis, Universite de Paris-Saclay, Paris-Sud (2018). Available at http://www.theses.fr/

  19. Liqiang Qi et al., Phys. Rev. C 98, 014612 (2018)

    ADS  Google Scholar 

  20. Liqiang Qi et al., Eur. Phys. J. Web. Conf. 169, 00018 (2018)

    Google Scholar 

  21. M. Lebois et al., Nucl. Instr. Methods. Phys. Res. A 735, 145 (2014)

    ADS  Google Scholar 

  22. A. Maj et al., Acta Pol. 40, 565 (2009)

    Google Scholar 

  23. R. Billnert et al., Phys. Rev. C 87, 024601 (2013)

    ADS  Google Scholar 

  24. A. Chyzh et al., Phys. Rev. C 85, 021601(R) (2012)

    ADS  Google Scholar 

  25. A. Chyzh et al., Phys. Rev. C 90, 014602 (2014)

    ADS  Google Scholar 

  26. A. Oberstedt et al., Phys. Rev. C 92, 014618 (2015)

    ADS  Google Scholar 

  27. A.R. Junghans et al., Phys. Lett. B 670, 200 (2008)

    ADS  Google Scholar 

  28. N. Schunck, L.M. Robledo, Rep. Progr. Phys. 79, 116301 (2016)

    ADS  Google Scholar 

  29. R. Vogt, J. Randrup, Phys. Rev. C 96, 064620 (2017)

    ADS  Google Scholar 

  30. A. Tudora et al., Ann. Nucl. Energy 35, 1 (2008)

    Google Scholar 

  31. FREYA user manual, p. 8–9. https://nuclear.llnl.gov/simulation

  32. https://mars.fnal.gov/

  33. T. Goorley et al., Initial MCNP6 release overview. MCNP6 version 0.1. Nucl. Technol. 180, 298 (2012)

    Google Scholar 

  34. A. Fasso et al., CERN-2005-10, INFN-TC 05-11, SLAC-R-773

  35. C. Schmitt et al., Phys. Rev. C 98, 044605 (2018)

    ADS  Google Scholar 

  36. P. Talou et al., Nucl. Data Sheets 118, 227 (2014)

    ADS  Google Scholar 

  37. R. Capote, Nucl. Data Sheets 131, 1 (2016)

    ADS  Google Scholar 

  38. T. Wang et al., Phys. Rev. C 93, 014606 (2016)

    ADS  Google Scholar 

  39. P. Talou et al., Phys. Rev. C 94, 064613 (2016)

    ADS  Google Scholar 

  40. G.M. Ter-Akopian et al., Phys. Rev. C 55, 1146 (1997)

    ADS  Google Scholar 

  41. R.P. Schmitt et al., Nucl. Phys. A 427, 614 (1984)

    ADS  Google Scholar 

  42. A. Bogachev et al., Eur. Phys. J. A 34, 23 (2007)

    ADS  Google Scholar 

  43. J. Wilson et al., Phys. Rev. Lett. 118, 222501 (2017)

    ADS  Google Scholar 

  44. K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)

    ADS  Google Scholar 

  45. P. Talou et al., Phys. Proc. 59, 83 (2014)

    ADS  Google Scholar 

  46. O. Litaize et al., Eur. Phys. J. Web. Conf. 116, 10003 (2016)

    Google Scholar 

  47. H.R. Bowman et al., Phys. Rev. Lett. 12, 195 (1964)

    ADS  Google Scholar 

  48. H. van der Ploeg et al., Phys. Rev. C 52, 1915 (1995)

    ADS  Google Scholar 

  49. D. Regnier et al., Phys. Proc. 31, 29 (2012)

    ADS  Google Scholar 

  50. A. Chzyzh et al., Phys. Lett. B 782, 652 (2018)

    ADS  Google Scholar 

  51. M. Ciemala et al., Phys. Rev. C 91, 054313 (2015)

    ADS  Google Scholar 

  52. http://www.nndc.bnl.gov/nudat2/

  53. A. Hotzel et al., Z. Phys. A 356, 299 (1996)

    ADS  Google Scholar 

  54. P. Singer et al., Z. Phys. A 359, 41 (1997)

    ADS  Google Scholar 

  55. H. Makii et al., Nucl. Inst. Methods Phys. Res. A 906, 88 (2018)

    ADS  Google Scholar 

  56. J.B. Fitzgerald et al., Z. Phys. A 355, 401 (1996)

    ADS  Google Scholar 

  57. D. Regnier, Contribution a l’etude des \(\gamma \) prompts de fission. PhD thesis, University Grenoble, France (2013)

  58. A. Chyzh et al., Phys. Rev. C 87, 034620 (2013)

    ADS  Google Scholar 

  59. S.J. Rose et al., Phys. Rev. C 96, 014601 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the ALTO facility for the production of high intensity beams, and smooth running, as well as we acknowledge support from the PARIS collaboration all along the campaign. We thank J. Randrup and K.-H. Schmidt for enlighting discussions about FREYA and GEF, respectively. We are also very thankful to K.-H. Schmidt for critical reading of the manuscript. We acknowledge funding from the ENSAR2 and CHANDA (Project 605203) programmes of the European Commission. This work was also supported by ELI-NP – Phase II, co-financed by the European Regional Development Fund through programme COP ID 1334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schmitt.

Additional information

Communicated by Jose Benlliure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Schmitt, C., Lebois, M. et al. Potential of prompt \(\gamma \)-ray emission studies in fast-neutron induced fission: a first step. Eur. Phys. J. A 56, 98 (2020). https://doi.org/10.1140/epja/s10050-020-00108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00108-w

Navigation