Skip to main content
Log in

Variations in pollen deposition of the main taxa forming the land cover along a NW–SE transect in European Russia: results of a ten year Tauber trap monitoring period

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Annual pollen accumulation rates of the main tree and shrub taxa of European Russia (Picea, Pinus, Betula, Alnus, Quercus, Tilia, Fraxinus, Ulmus and Corylus), as well as several herbaceous taxa (Poaceae, Cyperaceae, Chenopodiaceae and Artemisia), were obtained using Tauber pollen traps which were placed along a northwest to southeast transect in European Russia. The work was carried out within the framework of the Pollen Monitoring Programme (PMP). The data were analysed using both traditional interpretations of PAR (pollen accumulation rate) values and numerical methods (linear regressions and canonical correspondence analysis, CCA). The various vegetation zones: broadleaved-coniferous forest, broadleaved forest and forest-steppe, differ from each other by the absolute pollen values (PARs) of forest-forming taxa and several wind-pollinated herbs. However, no statistical support for zonal differentiation based on these PARs has been found. The only obvious difference was observed between the forest zone and the forest-steppe. The climatic gradient along the NW–SE transect is reflected by changes in pollen values, but is smoothed due to human influence during past centuries and as a consequence of the dominance of secondary vegetation formations. The highest total PAR, as well as PARs of all the forest-forming taxa, was observed in the southern part of the mixed broadleaved-coniferous forest zone (RU-ZV). The PARs of thermophilic taxa (Tilia, Fraxinus, Acer, Ulmus, Quercus and Corylus), as well as of Picea correspond to warmth availability which is under the influence of a combination of latitude, continentality of climate and microclimatic conditions. According to linear regressions, Picea, Tilia, Quercus and Corylus PARs correspond to Tjul, the July temperature of the previous season. Canonical correspondence analysis indicates that temperature, in particular Tjul, is the main climatic parameter controlling the variation of modern pollen rain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Behre K-E (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245. https://doi.org/10.1007/s00334-010-0277-8

    Article  Google Scholar 

  • Bennett KD, Hicks S (2005) Numerical analysis of surface and fossil pollen spectra from northern Fennoscandia. J Biogeogr 32:407–423. https://doi.org/10.1111/j.1365-2699.2005.01184.x

    Article  Google Scholar 

  • Berglund BE, Emanuelsson U, Persson S, Persson T (1986) Pollen/vegetation relationships in grazed and mowed plant communities of south Sweden. In: Behre K-E (ed) Anthropogenic indicators in pollen diagrams. Balkema, Rotterdam, pp 37–51

    Google Scholar 

  • Birks HJB (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. (QRA Technical Guide 5) Quaternary Research Asscoiation (Great Britain), Cambridge, pp 161–254

  • Blagoveschenskaya NV (1995) Cyбpeцeнтныe cпopoвo-пыльцeвыe cпeктpы и иx coпocтaвлeниe c coвpeмeннoй pacтитeльнocтью цeнтpaльнoй чacти Пpивoлжcкoй вoзвышeннocти (Subrecent pollen spectra and their comparison with modern vegetation of central part of Privolgskaya upland, in Russian with English abstract). Russ Bot J 80:1,778–1,788

  • Borisova OK, Novenko EYu, Zelikson EM, Kremenetski KV (2011) Lateglacial and Holocene vegetational and climatic changes in the southern taiga zone of West Siberia according to pollen records from Zhukovskoye peat mire. Quat Int 237:65–73. https://doi.org/10.1016/j.quaint.2011.01.015

    Article  Google Scholar 

  • Bradshaw RH (1981) Modern pollen-representation factors for woods in south-east England. J Ecol 69:45–70. https://doi.org/10.2307/2259815

    Article  Google Scholar 

  • Davis MB (2000) Palynology after Y2K—understanding the source area of pollen in sediments. Annu Rev Earth Planet Sci 28:1–18. https://doi.org/10.1146/annurev.earth.28.1.1

    Article  Google Scholar 

  • Davydova NN, Subetto DA, Khomutova VI, Sapelko TV (2001) Late Pleistocene-Holocene paleolimnology of three north-western Russian lakes. J Paleolimnol 26:37–51. https://doi.org/10.1023/A:1011131015322

    Article  Google Scholar 

  • Digital Map of European Ecological Regions (DMEER). https://www.eea.europa.eu/data-and-maps/figures/dmeer-digital-map-of-european-ecological-regions. Accessed 6 July 2019

  • Dolukhanov PM, Subetto DA, Arslanov KhA et al (2010) Holocene oscillations of the Baltic Sea and Lake Ladoga levels and early human movements. Quat Int 220:102–111. https://doi.org/10.1016/j.quaint.2009.09.022

    Article  Google Scholar 

  • Fedorova RV (1952a) Pacпpocтpaнeниe пыльцы и cпop тeкyчими вoдaми (The distribution of pollen and spores by flowing water, in Russian). Proc Geogr Inst Acad Sci USSR 52:46–72

    Google Scholar 

  • Fedorova RV (1952b) Кoличecтвeнныe зaкoнoмepнocти pacпpocтpaнeния пыльцы дpeвecныx пopoд вoздyшным пyтeм (Quantitative patterns of pollen distribution by air, in Russian). Proc Geogr Inst Acad Sci USSR 52:91–103

    Google Scholar 

  • Filimonova LV (2005) Динaмикa pacтитeльнocти cpeднeтaeжнoй пoдзoны Кapeлии в пoзднeлeдникoвьe и гoлoцeнe (пaлeoэкoлoгичecкиe acпeкты) (Late Glacial and Holocene vegetation dynamics in the middle taiga subzone of Karelia. Palaeoecological aspects, in Russian). Dissertation, Institute of Biology Karelian Research Centre Russian Academy of Sciences, Petrozavodsk

  • Gosling WD, Mayle FE, Killeen TJ, Siles M, Sanchez L, Boreham S (2003) A simple and effective methodology for sampling modern pollen rain in tropical environments. Holocene 13:613–618. https://doi.org/10.1191/0959683603hl649rr

    Article  Google Scholar 

  • Grimm EC (1991) Tilia and TiliaGraph. Illinois State Museum, Springfield, USA

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4. https://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hättestrand M (2013) Eight years of annual pollen monitoring in northern Sweden, from the boreal forest to above the birch forest-line. Grana 52:26–48. https://doi.org/10.1080/00173134.2012.744427

    Article  Google Scholar 

  • Hättestrand M, Jensen K, Hallsdóttir M, Vorren K-D (2008) Modern pollen accumulation rates at the north-western fringe of the European boreal forest. Rev Palaeobot Palynol 151:90–109. https://doi.org/10.1016/j.revpalbo.2008.03.001

    Article  Google Scholar 

  • Hicks S (2001) The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Rev Palaeobot Palynol 117:1–29. https://doi.org/10.1016/S0034-6667(01)00074-4

    Article  Google Scholar 

  • Hicks S, Hyvärinen H (1999) Pollen influx values measured in different sedimentary environments and their palaeoecological implications. Grana 38:228–242. https://doi.org/10.1080/001731300750044618

    Article  Google Scholar 

  • Hicks S, Ammann B, Latałowa M, Pardoe H, Tinsley H (eds) (1996) European Pollen Monitoring Programme—project description and guidelines. Oulu University Press, Oulu

    Google Scholar 

  • Huusko A, Hicks S (2009) Conifer pollen abundance provides a proxy for summer temperature: Evidence from the latitudinal forest limit in Finland. J Quat Sci 24:522–528. https://doi.org/10.1002/jqs.1250

    Article  Google Scholar 

  • Iversen J (1964) Plant indicators of climate, soil, and other factors during the Quaternary: Report of the sixth International Congress on the Quaternary, Warsaw 1961. Palaeobot Sect 2:421–428

    Google Scholar 

  • Jazvenko SB (1992) Coвpeмeннaя пыльцeвaя пpoдyкция и гoлoцeнoвaя иcтopия гopныx лecoв Зaкaвкaзья (Modern pollen production and Holocene history of mountain forests of Transcaucasia, in Russian) Dissertation. Moscow State University, Moscow

    Google Scholar 

  • Jensen C, Vorren K-D, Mørkved B (2007) Annual pollen accumulation rate (PAR) at the boreal and alpine forest-line on north-western Norway, with special emphasis on Pinus sylvestris and Betula pubescens. Rev Palaeobot Palynol 144:337–361. https://doi.org/10.1016/j.revpalbo.2006.08.006

    Article  Google Scholar 

  • Kabailene MV (1969) Фopмиpoвaниe пыльцeвыx cпeктpoв и мeтoды вoccтaнoвлeния пaлeopacтитeльнocти (Formation of pollen spectra and methods of palaeovegetation reconstruction, in Russian). Leningrad

  • Koeppen Climate Classification Map. www.fao.org/sd/eidirect/climate Accessed 10 Aug 2019

  • Kupriyanova LA (1951) Иccлeдoвaниe пыльцы и cпop c пoвepxнocти пoчвы из выcoкoшиpoтныx paйoнoв Apктики (Investigations of pollen and spores from the soil surface of High Arctic, in Russian with English abstract). Russ Bot J 36:258–269

    Google Scholar 

  • Lapteva EG (2013) Cyбфoccильныe cпopoвo-пыльцeвыe cпeктpы coвpeмeннoй pacтитeльнocти Южнoгo Уpaлa (Subfossil pollen spectra of modern vegetation in the southern Ural Mountains, in Russian). B Bashkiria Univ 18:77–81

    Google Scholar 

  • Latałowa M, van der Knaap WO (2006) Late quaternary expansion of Norway spruce Picea abies (L.) Karst in Europe according to pollen data. Quat Sci Rev 25:2,780–2,805. doi:10.1016/j.quascirev.2006.06.007

  • Levetin E, Rogers CA, Hall SA (2000) Comparison of pollen sampling with a Burkard spore trap and a Tauber trap in a warm temperate climate. Grana 39:294–302

    Article  Google Scholar 

  • Lisitsyna OV, Hicks S (2014) Estimation of pollen deposition time-span in moss polsters with the aid of annual pollen accumulation values from pollen traps. Grana 53:232–248. https://doi.org/10.1080/00173134.2014.916344

    Article  Google Scholar 

  • Lisitsyna OV, Smirnov N, Aleynikov AA (2017) Modern pollen data from pristine taiga forest of Pechora–Ilych state nature biosphere reserve (Komi republic, Russia): first results. Ecol Quest 26:53–55. https://dx.doi.org/10.12775/EQ.2017.016

  • Mal’gina EA, (1950) Oпыт coпocтaвлeния pacпpocтpaнeния пыльцы нeкoтopыx дpeвecныx пopoд c иx apeaлaми в пpeдeлax Eвpoпeйcкoй чacти CCCP (The experience of comparison of pollen dispersion of some trees with their ranges within the European part of USSR, in Russian). Proc Geogr Inst Acad Sci USSR 46:256–270

    Google Scholar 

  • Mokhova L, Tarasov P, Bazarova V, Klimin M (2009) Quantitative biome reconstruction using modern and late Quaternary pollen data from the southern part of the Russian Far East. Quat Sci Rev 28:2,913–2,926. https://doi.org/10.1016/j.quascirev.2009.07.018

  • Nejshtadt MI (1957) Иcтopия лecoв и пaлeoгeгopaфия CCCP в гoлoцeнe (History of forests and palaeogeography of USSR in Holocene, in Russian) AN SSSR, Moscow

  • Nielsen AB, Møller PF, Giesecke T, Stavngaard B, Fontana SL, Bradshaw RH (2010) The effect of climate conditions on inter-annual flowering variability monitored by pollen traps below the canopy in Draved Forest. Denmark Veg Hist Archaeobot 19(4):309–323. https://doi.org/10.1007/s00334-010-0253-3

    Article  Google Scholar 

  • Nosova MB (2009) Cпopoвo-пыльцeвыe диaгpaммы гoлoцeнoвыx oтлoжeний кaк иcтoчник инфopмaции oб aнтpoпoгeннoм вoздeйcтвии нa pacтитeльнocть в дoиcтopичecкий пepиoд (нa пpимepe Цeнтpaльнo-Лecнoгo зaпoвeдникa) (Pollen from Holocene sequences as a source of the information about anthropogenic influence on vegetation in prehistoric period. The example from Central Forest Reserve, in Russian with English abstract). Bulletin of Moscow Society of Naturalists, Biological Series 114:30–36

    Google Scholar 

  • Nosova M, Volkova O, Severova E (2012) Pollen-climate relationships in broadleaved-coniferous forest zone (Central Russia). Allergol Immunol 9:179. https://doi.org/10.12775/EQ.2017.009

    Article  Google Scholar 

  • Nosova MB, Severova EE, Volkova OA (2013) Boздeйcтвиe экcтpeмaльнo выcoкиx лeтниx тeмпepaтyp нa cкopocть aккyмyляции пыльцы в cpeднeй пoлoce Eвpoпeйcкoй Poccии (Influence of extremely high summer temperatures on pollen accumulation rates in moderate climate zone of Central European Russia, in Russian with English abstract). B Mosc Soc Nat, Biol Ser 118:55–62

    Google Scholar 

  • Nosova MB, Severova EE, Volkova OA, Kosenko JV (2015) Representation of Picea pollen in modern and surface samples from Central European Russia. Veget Hist Archaeobot 24:319–330. https://doi.org/10.1007/s00334-014-0480-0

    Article  Google Scholar 

  • Nosova MB, Novenko EYu, Severova EE, Volkova OA (2019) Vegetation and climate changes within and around the Polistovo-Lovatskaya mire system (Pskov Oblast, north-western Russia) during the past 10,500 years. Veget Hist Archaeobot 28:123–140. https://doi.org/10.1007/s00334-018-0693-8

    Article  Google Scholar 

  • Novenko EYu (2016) Изменения растительности и климата Центральной и Восточной Европы в позднем плейстоцене и голоцене в межледниковые и переходные этапы климатических макроциклов (Vegetation and climate changes of Central and Eastern Europe in the late Pleistocene and Holocene during interglacial and transitional stages of climate macrocycles, in Russian with English abstract). GEOS, Moscow

  • Novenko EYu, Volkova EM, Nosova MB, Zuganova IS (2009) Late Glacial and Holocene landscape dynamics in the southern taiga zone of the East European Plain according to pollen and macrofossil records from the Central Forest State Reserve (Valdai Hills, Russia). Quat Int 207:93–103. https://doi.org/10.1016/j.quaint.2008.12.006

    Article  Google Scholar 

  • Novenko EYu, Nosova MB, Krasnorutskaya KV (2011) Ocoбeннocти пoвepxнocтныx cпopoвo-пыльцeвыx cпeктpoв южнoй тaйги Bocтoчнo-Eвpoпeйcкoй paвнины (Features of surface pollen spectra of the southern taiga on the East European Plain, in Russian with English abstract). News of Tula State University. Nat Sci 2:345–354

    Google Scholar 

  • Novenko EYu, Volkova EM, Glasko MP, Zyuganova IS (2012) Palaeoecological evidence for the middle and late Holocene vegetation, climate and land use in the upper Don River basin (Russia). Veg Hist Archaeobot 21(4–5):337–352. https://doi.org/10.1007/s00334-011-0339-6

    Article  Google Scholar 

  • Ogureeva GN, Leonova NB, Emelyanova LG et al (2018) The map “Biomes of Russia” M.1:7 500 000 (2nd edn) World Wild Fund, Moscow. Accessed 6 July 2019

  • Pardoe HS, Giesecke T, van der Knaap WO et al (2010) Comparing pollen spectra from modified Tauber traps and moss samples: examples from a selection of woodlands across Europe. Veget Hist Archaeobot 19:271–283. https://doi.org/10.1007/s00334-010-0258-y

    Article  Google Scholar 

  • Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23(1):76–86. https://doi.org/10.1016/0033-5894(85)90073-0

    Article  Google Scholar 

  • Severova E, Volkova O (2016) Variations and trends of Betula pollen seasons in Moscow (Russia) in relation to meteorological parameters. Aerobiologia 33:253–264. https://doi.org/10.1007/s10453-016-9460-4

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Tarasov PE, Savelieva LA, Long T, Leipe C (2019) Postglacial vegetation and climate history and traces of early human impact and agriculture in the present-day cool mixed forest zone of European Russia. Quat Int 516:21–41. https://doi.org/10.1016/j.quaint.2018.02.029

    Article  Google Scholar 

  • Tarasov P, Williams JW, Andreev A et al (2007) Satellite-and pollen-based quantitative woody cover reconstructions for northern Asia: verification and application to late-Quaternary pollen data. Earth Planet Sci Lett 264:284–298. https://doi.org/10.1016/j.epsl.2007.10.007

    Article  Google Scholar 

  • Ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317. https://doi.org/10.1016/S0065-2504(08)60183-X

    Article  Google Scholar 

  • Tolonen M (1985) Palaeoecological record of local fire history from a peat deposit in SW Finland. Ann Bot Fenn 22:15–29

    Google Scholar 

  • Van der Knaap WO, van Leeuwen JFN (2003) Climate-pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. Holocene 13:809–828. https://doi.org/10.1191/0959683603hl657rp

    Article  Google Scholar 

  • Van der Knaap WO, van Leeuwen JF, Svitavská-Svobodová H et al (2010) Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. Veget Hist Archaeobot 19:285–307. https://doi.org/10.1007/s00334-010-0250-6

    Article  Google Scholar 

  • Voronina A, Pankin M, Yagodovskaya M et al (2018) Пaлeoиcтopия бoлoтa «Cимa» (The palaeohistory of the mire “Sima”, in Russian). Flora and fauna of the West of Moscow Region. KMK, Moscow, pp 119–128

    Google Scholar 

  • Vuorela I (1973) Relative pollen rain around cultivated fields. Acta Bot Fenn 102:1–28

    Google Scholar 

  • Xu QH, Li YC, Tian F, Cao XY, Yang XL (2009) Pollen assemblages of Tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. Rev Palaeobot Palynol 153:86–101. https://doi.org/10.1007/s11430-013-4738-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank Svetlana Igosheva and the staff of Polistovsky Reserve (Пoлиcтoвcкий зaпoвeдник), Nikolai Potemkin, Anatoly Zheltukhin and the staff of the Central Forest State Natural Reserve (Цeнтpaльнo-Лecнoй гocyдapcтвeнный зaпoвeдник), and Oksana Cherednichenko, Elena Volkova, and Olga Burova for their help in the field. We also thank Anneli Poska for discussions and critical comments on the manuscript. This study was carried out in accordance with institutional research project No 18–118021490111-5 and Poccийcкий фoнд фyндaмeнтaльныx иccлeдoвaний (the Russian Foundation for Basic Research), project 17–04-01034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria B. Nosova.

Additional information

Communicated by F. Bittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosova, M.B., Lisitsyna, O.V., Volkova, O.A. et al. Variations in pollen deposition of the main taxa forming the land cover along a NW–SE transect in European Russia: results of a ten year Tauber trap monitoring period. Veget Hist Archaeobot 29, 699–716 (2020). https://doi.org/10.1007/s00334-020-00775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-020-00775-1

Keywords

Navigation