Skip to main content
Log in

Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range \(0_g^-\) state

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The light-induced frequency shift (LIFS) of ultracold molecular ro-vibrational levels originates from the strong coupling of the atomic-scattering state and the bound-molecular state. In this paper, we present our experimental determination of the LIFSs of the lowest vibrational levels (ν = 0, 1) in the purely long-range \(0_g^-\) state of ultracold cesium molecules. A high-resolution double photoassociation spectroscopy is developed, which serves as frequency ruler to measure the frequency shifts of the lowest molecular levels for Cs2. The experimental results are qualitatively consistent with the theoretical expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)

    Article  ADS  Google Scholar 

  2. J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)

    Article  Google Scholar 

  3. J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, Magneto-optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)

    Article  ADS  Google Scholar 

  4. A. M. Rey, A. V. Gorshkov, C. V. Kraus, M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. Ye, N. D. Lemke, and A. D. Ludlow, Probing many-body interactions in an optical lattice clock, Ann. Phys. 340(1), 311 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12(7), 639 (2016)

    Article  Google Scholar 

  7. K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold photoassociation spectroscopy: Longrange molecules and atomic scattering, Rev. Mod. Phys. 78(2), 483 (2006)

    Article  ADS  Google Scholar 

  8. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)

    Article  ADS  Google Scholar 

  9. N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys. 89(1), 015006 (2017)

    Article  ADS  Google Scholar 

  10. L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)

    Article  Google Scholar 

  11. J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Controlled state-to-state atom-exchange reaction in an ultracold atom–dimer mixture, Nat. Phys. 13(7), 699 (2017)

    Article  Google Scholar 

  12. L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, N. R. Hutzler, T. Rosenband, and K. K. Ni, Building one molecule from a reservoir of two atoms, Science 360(6391), 900 (2018)

    Article  ADS  Google Scholar 

  13. W. B. Cairncross, D. N. Gresh, M. Grau, K. C. Cossel, T. S. Roussy, Y. Q. Ni, Y. Zhou, J. Ye, and E. A. Cornell, Precision measurement of the electron’s electric dipole moment using trapped molecular ions, Phys. Rev. Lett. 119, 153001 (2017)

    Article  ADS  Google Scholar 

  14. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  15. S. A. Moses, J. P. Covey, M. T. Miecnikowski, D. S. Jin, and J. Ye, New frontiers for quantum gases of polar molecules, Nat. Phys. 13(1), 13 (2017)

    Article  Google Scholar 

  16. O. Dulieu and C. Gabbanini, The formation and interactions of cold and ultracold molecules: New challenges for interdisciplinary physics, Rep. Prog. Phys. 72, 086401 (2009)

    Article  ADS  Google Scholar 

  17. D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, Photoassociative spectroscopy and formation of cold molecules in cold cesium vapor: Trap-loss spectrum versus ion spectrum, J. Mol. Spectrosc. 195(2), 229 (1999)

    Article  ADS  Google Scholar 

  18. J. Ma, J. Wu, G. Chen, Q. Fan, H. Feng, X. Dai, W. Sun, L. Xiao, and S. Jia, Experimental determination of the rotational constants of high-lying vibrational levels of ultracold Cs2 in the \(0_g^-\) purely long-range state, J. Phys. Chem. Lett. 4(21), 3612 (2013)

    Article  Google Scholar 

  19. S. Sainis, J. Sage, E. Tiesinga, S. Kotochigova, T. Bergeman, and D. DeMille, Detailed spectroscopy of the Cs2a3Σ+u state and implications for measurements sensitive to variation of the electron-proton mass ratio, Phys. Rev. A 86(2), 022513 (2012)

    Article  ADS  Google Scholar 

  20. Y. Yang, X. Liu, Y. Zhao, L. Xiao, and S. Jia, Rovibrational dynamics of RbCs on its lowest 1,3Σ+ potential curves calculated by coupled cluster method with all-electron basis set, J. Phys. Chem. A 116(46), 11101 (2012)

    Article  Google Scholar 

  21. J. Wu, Z. Ji, Y. Zhang, L. Wang, Y. Zhao, J. Ma, L. Xiao, and S. Jia, High sensitive determination of light induced frequency shifts of ultracold cesium molecules, Opt. Lett. 36(11), 2038 (2011)

    Article  ADS  Google Scholar 

  22. P. K. Molony, P. D. Gregory, Z. H. Ji, B. Lu, M. P. Köppinger, C. R. Le Sueur, C. L. Blackley, J. M. Hutson, and S. L. Cornish, Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state, Phys. Rev. Lett. 113, 255301 (2014)

    Article  ADS  Google Scholar 

  23. L. Lassablière and G. Quéméner, Controlling the scattering length of ultracold dipolar molecules, Phys. Rev. Lett. 121(16), 163402 (2018)

    Article  ADS  Google Scholar 

  24. S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold Potassium-Rubidium molecules, Science 327(5967), 853 (2010)

    Article  ADS  Google Scholar 

  25. M. Portier, S. Moal, J. Kim, M. Leduc, C. Cohen-Tannoudji, and O. Dulieu, Analysis of light-induced frequency shifts in the photoassociation of ultracold metastable helium atoms, J. Phys. B 39(19), S881 (2006)

    Article  ADS  Google Scholar 

  26. I. D. Prodan, M. Pichler, M. Junker, R. G. Hulet, and J. L. Bohn, Intensity dependence of photoassociation in a quantum degenerate atomic gas, Phys. Rev. Lett. 91(8), 080402 (2003)

    Article  ADS  Google Scholar 

  27. C. McKenzie, J. Hecker Denschlag, H. Häffner, A. Browaeys, L. E. E. de Araujo, F. K. Fatemi, K. M. Jones, J. E. Simsarian, D. Cho, A. Simoni, E. Tiesinga, P. S. Julienne, K. Helmerson, P. D. Lett, S. L. Rolston, and W. D. Phillips, Photoassociation of sodium in a bose-einstein condensate, Phys. Rev. Lett. 88(12), 120403 (2002)

    Article  ADS  Google Scholar 

  28. A. Simoni, P. S. Julienne, E. Tiesinga, and C. J. Williams, Intensity effects in ultracold photoassociation line shapes, Phys. Rev. A 66(6), 063406 (2002)

    Article  ADS  Google Scholar 

  29. J. L. Bohn and P. S. Julienne, Semianalytic theory of laser-assisted resonant cold collisions, Phys. Rev. A 60(1), 414 (1999)

    Article  ADS  Google Scholar 

  30. Y. Q. Li, G. S. Feng, W. L. Liu, J. Z. Wu, J. Ma, L. T. Xiao, and S. T. Jia, Control of light induced frequency shift in ultracold cesium molecules by an external magnetic field, Opt. Lett. 40(10), 2241 (2015)

    Article  ADS  Google Scholar 

  31. W. Liu, X. Wang, J. Wu, X. Su, S. Wang, V. B. Sovkov, J. Ma, L. Xiao, and S. Jia, Experimental observation and determination of the light induced frequency shift of hyperfine levels of ultracold polar molecules, Phys. Rev. A 96(2), 022504 (2017)

    Article  ADS  Google Scholar 

  32. R. Wester, S. D. Kraft, M. Mudrich, M. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemüller, Photoassociation inside an optical dipole trap: Absolute rate coefficients and Franck–Condon factors, Appl. Phys. B 79(8), 993 (2004)

    Article  ADS  Google Scholar 

  33. N. Bouloufa, A. Crubellier, and O. Dulieu, Reexamination of the Og- pure long-range state of Cs2: Prediction of missing levels in the photoassociation spectrum, Phys. Rev. A 75, 052501 (2007)

    Article  ADS  Google Scholar 

  34. Y. Zhang, J. Ma, J. Wu, L. Wang, L. Xiao, and S. Jia, Experimental observation of the lowest levels in the photoassociation spectroscopy of the Og- purely-long-range state of Cs2, Phys. Rev. A 87, 030503 (2013)

    Article  ADS  Google Scholar 

  35. J. Wu, W. Liu, Y. Li, J. Ma, L. Xiao, and S. Jia, Experimental determination of rotational constants of low-lying vibrational levels in the Og- pure long-range state of ultracold Cs2 molecule, J. Quant. Spectrosc. Radiat. Transf. 191, 13 (2017)

    Article  ADS  Google Scholar 

  36. J. Wu, J. Ma, Y. Zhang, Y. Li, L. Wang, Y. Zhao, G. Chen, L. Xiao, and S. Jia, High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules, Phys. Chem. Chem. Phys. 13(42), 18921 (2011)

    Article  Google Scholar 

  37. M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P3/2 limit, J. Chem. Phys. 121(4), 1796 (2004)

    Article  ADS  Google Scholar 

  38. A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Photoassociative spectroscopy of the long-range state, Eur Phys J. D 5, 389 (1999)

    Article  ADS  Google Scholar 

  39. M. Pichler, H. Chen, and W. C. Stwalley, Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit, J. Chem. Phys. 121(14), 6779 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grants Nos. 61722507, 61675121, and 61705123), PCSIRT (No. IRT-17R70), 111 Project (Grant No. D18001), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (OIT), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, and the Applied Basic Research Project of Shanxi Province, China (Grant Nos. 201701D221002, 201901D211191, and 201901D211188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JZ., Li, YQ., Liu, WL. et al. Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range \(0_g^-\) state. Front. Phys. 15, 22602 (2020). https://doi.org/10.1007/s11467-020-0951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0951-y

Keywords

Navigation